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Abstract

The characterization and analysis of uncertainty are central components of decision-

making, especially in the energy sector; however, there is currently a gap in the

energy modeling community between the recognition of uncertainty’s importance and

its incorporation in large-scale models. This dissertation explores how the explicit

inclusion of uncertainty through sequential decision-making approaches like stochastic

programming can provide insights to energy planners in different domains.

The dissertation first investigates the dynamics of capacity planning and dispatch

in the electric power sector under technological, economic, and policy-related uncer-

tainties. Metrics like the expected value of perfect information and the value of the

stochastic solution quantify the benefits of reducing uncertainty and of incorporating

uncertainty explicitly in modeling efforts. Model results highlight risks associated

with shale gas and climate policy, offer policy guidance in these areas, and indi-

cate that planners are likely underestimating the impacts of uncertainty. Hedging

and strategic delay are explained in terms of the optionality of energy investments,

leading to insights about uncertainty, learning, and irreversibility.

A second application presents a framework for allocating investments across a

portfolio of energy technology research and development (R&D) programs, which in-

corporates uncertainties in the effectiveness of investments and in diffusion markets.

This work analyzes how R&D valuations vary in different decision-making settings

and shows how wait-and-see valuation approaches, by not explicitly accounting for

exogenous market uncertainties, may undervalue the hedging potential of technolo-

gies. The results indicate that R&D is more valuable in suboptimal planning and

policy environments.

iv



www.manaraa.com

The final section discusses policy and modeling questions about low-probability,

high-impact risks in climate change economics. This analysis examines the impacts

of fat-tailed uncertainty about the climate sensitivity parameter on near-term abate-

ment using a sequential decision-making framework. The results demonstrate how

policy prescriptions from integrated assessment models are highly sensitive to the

specifications of uncertainty, learning, and damages. Fat tails alone do not merit

stringent mitigation immediately, which also requires strongly convex damages and

slow learning. The analysis illustrates the potential value of midcourse corrections on

reducing consumption risks imposed by uncertain damages and focuses attention on

the dynamics of learning.
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Chapter 1

Introduction

1.1 Motivation: Uncertainty in Energy Modeling

Utilities, generators, and other energy planners face many pervasive sources of uncer-

tainty when making near-term decisions. Since energy-sector assets like power plants,

transmission facilities, and oil refineries are long-lived and largely irreversible invest-

ments, insufficiently characterizing or accounting for uncertainties like fuel prices or

environmental policy can impose economic and environmental burdens on a range

of stakeholders. Due to the long-lasting effects of energy decisions and also to the

complicated economic, technological, and policy-related systems in which they are

embedded, there are different manifestations of uncertainty and risk management for

stakeholders at all levels, from individual firms to nations.

Given the centrality and complexity of uncertainty in energy and environmental

management, there is a need for decision support tools that can provide a greater sense

of clarity and that can reduce exposure to significant downside losses while preserving

options for upside gains from volatility. However, in the energy modeling community,

there is currently a gap between the recognition of uncertainty’s importance and its

actual incorporation in large-scale models. Many energy models currently use deter-

ministic frameworks, and when uncertainty analysis is performed, it often involves

simple methods like sensitivity or scenario analysis (Kann and Weyant, 2000). These

methods use different assumptions for uncertain parameters to test the robustness of

1
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conclusions but do not typically incorporate probabilistic information.

Another commonly used approach is uncertainty propagation (e.g., Monte Carlo

analysis), which involves sampling from distributions for uncertain parameters, prop-

agating them through a deterministic model, and creating output distributions. Since

a propagation framework suggests a different optimal strategy for each state of the

world, this approach leaves decision-makers in a quandary about how to choose among

alternatives before uncertainty is resolved and how to translate results of modeling

efforts into actionable near-term insights.1 Additionally, since the costs associated

with uncertainty remain unknown, propagation approaches cannot quantify the rela-

tive importance of uncertainties.

In contrast to sensitivity analysis and uncertainty propagation approaches, se-

quential decision-making frameworks like stochastic programming incorporate uncer-

tainty explicitly and identify hedging strategies that balance the risks of premature

action with those of delay. These models determine “optimal” policies in multiple

stages based on updated information and offer a more robust treatment of uncer-

tainty than propagation models, which select policies once and do not incorporate

learning thereafter.2 Although early research drew attention to the importance of

uncertainty analysis and incorporated sequential decision-making in simple energy

models (Morgan and Henrion, 1990; Manne and Richels, 1993; Nordhaus, 1994; Birge

and Rosa, 1996), there was subsequently a noticeable dearth of research that applied

such approaches to large-scale energy models. As described in the literature review

in Chapter 2, the limited studies that have used stochastic programming do not

take full advantage of the framework and often do not incorporate recent advances

in the field, thus overlooking valuable opportunities to inform challenging decision

problems. These shortcomings make the development and application of sequential

1For many decision problems, optimal strategies under different scenarios suggest vastly different
actions in the immediate future. For instance, Blanford (2013) shows how emissions trajectories in
standard deterministic models are highly sensitive to assumptions about negative emissions tech-
nologies when performing cost-effectiveness analysis with overshoot to reach stabilization targets.
However, the future availability and cost of carbon dioxide removal technologies are far from certain.

2Mathematical programming models recommend optimal strategies given a range of assumptions
about parameters, probabilities, system constraints, and preferences. As this dissertation empha-
sizes, the validity of a model recommendation depends strongly on such assumptions.
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decision-making frameworks in energy modeling an area of active research.

This dissertation examines how the explicit inclusion of uncertainty through se-

quential decision-making can provide insights to energy planners in the domains of

electric sector capacity planning, research and development (R&D) portfolio man-

agement, and climate policy.3 It aims to identify novel conclusions that cannot be

captured in (or would not be apparent using) standard deterministic approaches. In

doing so, the tools developed and applied here provide better guidance to answering

questions surrounding the characterization, analysis, and communication of uncer-

tainty for energy and environmental systems.

Recent decades have provided improvements in the performance and costs of com-

putational tools, which have facilitated the development of larger and more complex

models. The concurrent trend in increased data availability also augments model-

ing capabilities for treating uncertainty explicitly. Despite these advances, decision-

makers and modelers in the energy landscape have been slow to adopt developments

in operations research and management science (e.g., algorithms for solving stochastic

programs), even though such techniques have been applied lucratively in other fields

like finance, operations management, agriculture, and telecommunications (Wallace

and Ziemba, 2005). This dissertation demonstrates the many potential benefits of

bridging state-of-the-art operations research techniques with energy models to pro-

vide prescriptive decision support and to identify blind spots in planning. These

modeling and computational advances can be leveraged to take into explicit consid-

eration a wider range of potential futures and to hedge against negative outcomes.

Another contribution of this work is to demonstrate the importance of uncertainty

quantification. The applications in this dissertation illustrate how model results are

sensitive to input distributions across a range of domains. Since many existing studies

rely on ad-hoc distributions over parameters of interest, these results suggests that

uncertainty quantification should be given increased research attention commensurate

with its importance in determining model results and should be a co-equal partner

with model building.4 The dissertation characterizes uncertainty using a range of

3In addition to these three applications, the techniques and metrics employed in this dissertation
can be used in a wide range of decision contexts under uncertainty in diverse fields.

4As literature reviews in subsequent chapters indicate, many studies invoke the Laplace criterion
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approaches like statistical analyses, expert elicitations, and econometric modeling. In

particular, expert elicitations are discussed at length in Appendix B and are used

throughout the dissertation due to their importance in quantifying uncertainty about

future cost and performance characteristics of energy technologies.

1.2 Analytical Framework

A central theme of this research is that the explicit inclusion of uncertainty through

sequential decision-making can offer better performance and provide important in-

sights that would not be apparent using deterministic models or non-probabilistic

uncertainty analysis. Stochastic programming is the sequential decision-making ap-

proach used throughout this dissertation to formulate strategies that incorporate ro-

bustness, regret, and resilience. As described in Chapter 2, stochastic programming

has many attractive features that make it a well-suited mathematical framework for

bridging near-term decisions with their long-term implications in the context of high-

dimensional energy modeling under multifaceted uncertainty.5

Stochastic programming finds hedging strategies for problems with uncertain data,

which adapt to changing conditions and updated information. Like most sequential

decision-making approaches, it exchanges some degree of optimal performance for

reduced exposure to broken assumptions. Although the strategies suggested by this

approach are unlikely to be ideally suited for every state of the world, these strategies

are optimal ex ante and provide resilience and adaptability under a variety of future

scenarios. When uncertainty is prevalent and the long-term consequences of near-

term decisions are imperfectly understood, hedging strategies allow decision-makers

to shape available options, to cope with the unknown, to learn from errors, and to

exploit new information as conditions change.

and assume equal probabilities for all states of the world, which is the simplest non-informative
prior. In the absence of probabilistic information, the Principle of Insufficient Reason suggests
that decision-makers will act as if probabilities of different outcomes are equally likely, which is
descriptively true in many settings (Luce and Raiffa, 1957; Levi, 1974). However, the applications
in this dissertation provide evidence that such assumptions many be incorrect and may provide
misleading guidance to decision-makers.

5Here, the near-term future refers generally to the decision periods before uncertainty is resolved.
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Stochastic programs embody many of the principles behind resilient and adap-

tive strategies for management under uncertainty (Morgan et al., 2009). Resilient

strategies are ones that consider a diverse array of possible futures and that per-

form reasonably well across this range of plausible realizations. Adaptive strategies

are designed to facilitate less costly adjustments once more information is available

about the future through time, experience, and research. Adaptive strategies relate

to the concept of flexibility, which is the degree to which a strategy can be adapted

in the future as more information is known about random variables. The goal of flex-

ible strategies is to keep the expected costs associated with misforecasts about the

future and surprises as low as possible.6 These strategies are orthogonal to the con-

ventional notion of determining a single optimal strategy for all states of the world.

Although stochastic programming does not make resilience or adaptability explicit

objectives for optimization, aspects of these concepts are implicitly accounted for in

the formulation and resulting strategies of stochastic programs.

Stochastic programming provides a convenient mathematical framework for defin-

ing and quantifying answers to two important, overarching questions for decision-

makers and modelers:

• How much should decision-makers be willing to pay for information about un-

certain quantities?

• What is the value of incorporating uncertainty explicitly in the decision-making

process instead of using a deterministic approximation?

These questions can be answered by using two related metrics for evaluating the

importance of uncertainties—namely, the expected value of perfect information and

the value of the stochastic solution. As discussed in Chapter 3.3.3, the expected

value of perfect information represents the expected change in the objective function

value if perfectly accurate forecasts are available and places an upper bound on a

decision-maker’s willingness to pay for information-gathering activities. The value of

6Due to the use of a subjectivist Bayesian interpretation of probability in this research, surprises
refer to gaps between “perceived reality and one’s expectations” (Morgan et al., 2009), suggesting
that a surprise is a property of an observer or decision-maker.
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the stochastic solution quantifies the benefit of explicitly accounting for uncertainty

through range of scenarios and has important implications in the process of model

construction by identifying the most important uncertainties for explicit inclusion.

This metric also helps to prioritize uncertainty characterization efforts and indicates

whether extensive and resource-intensive quantification is necessary. In summary, the

expected value of perfect information is the cost of being uncertain, wheres the value

of the stochastic solution can be viewed as the additional cost of pretending that

uncertainty does not exist.

1.3 Research Questions

Although risk cannot be eliminated, it can be proactively managed. Manne and

Richels coined the term “greenhouse insurance” to describe the problem of develop-

ing strategies to cope with climate change under pervasive uncertainty (Manne and

Richels, 1993). Three general forms of greenhouse insurance are: 1. Reducing emis-

sions; 2. Investing in R&D for technologies to reduce emissions at lower costs (i.e.,

active technological improvement); 3. Performing scientific research to reduce uncer-

tainties about climate change and its impacts. This taxonomy of strategies stresses

how uncertainties in climate policy interact with those in technology policy.

Given the interconnectedness of climate change mitigation and technological de-

velopment, the three linked projects in subsequent chapters explore different facets

of greenhouse insurance and related issues in energy modeling. These applications of

sequential decision-making make recommendations about how uncertainty should be

quantified and analyzed in the domains of electric sector capacity planning, energy

technology R&D portfolio management, and climate policy under fat-tailed uncer-

tainty. These research efforts reinforce the need for more judicious consideration of

uncertainty in modeling efforts, decision-making, and resource allocation.
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1.3.1 Electric Sector Capacity Planning under Uncertainty

Although planning in the United States (US) electric power sector was relatively

predictable during the industry’s first century, utilities and policy makers must now

grapple with many simultaneous challenges: increasingly stringent compliance with

an array of environmental policies (e.g., greenhouse gas emissions, regional haze,

ozone, and hazardous air pollutants), an aging fleet of generators, sudden changes

to the economics of fossil resources due to shale gas, an increased policy emphasis

on demand-side management resources, modernization of the electricity grid, higher

prices for construction materials (e.g., concrete and steel), and an uncertain economy.7

Electric utilities are one of the largest industries in the US, holding assets of over

$600 billion and having annual sales above $260 billion (Munson, 2005). Assets in

the power sector like power plants are designed to last many decades.8 Given the

likelihood that greenhouse gas emissions will be regulated during the lifetime of new

units, the environment in which generators come online and operate may be very

different from the one in which they are planned. Therefore, investment decisions

should be made with a full understanding of the risks and tradeoffs associated with

each alternative and should be based on the best-available information. Otherwise,

the industry could be locked into investments that expose a wide range of stakeholders

to increased risk for years to come.

The objective of the research in Chapters 3 through 5 is to investigate how tech-

nological, economic, and policy-related uncertainties may impact the deployment of

supply-side technologies in the US electric power sector. In particular, this research

looks at how uncertainties in the stringency of climate policy, natural gas and coal

prices, upstream methane emissions from shale gas, capital costs for nuclear and coal

with carbon capture and storage (CCS), public acceptance of carbon dioxide (CO2)

storage, and performance of gas-turbine-based technologies will influence investment

dynamics through 2050. It explores how these long-run uncertainties can impact

7The focus on the electric power sector in the capacity planning and R&D portfolio chapters
reflects the extensive research and policy consideration devoted to the industry, which also makes
data more easily accessible to construct the models.

8Some transmission facilities in the US are nearly a century old.
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near-term investments and how hedging strategies can reduce exposure to downside

losses while preserving options for upside gains from volatility.

Capacity planning in the power sector fits the stochastic programming paradigm

in that strategies are modified over time in light of new information about policies,

technologies, and resources. The optimization problem is framed from the perspective

of utilities and generators, where the objective function is to minimize discounted

energy system costs. The primary decision objectives are to determine what types of

generating capacity to build and operate and when such units should come online.

The goal of long-term planning for utilities is to ensure that adequate resources are

available to reliably serve demand while balancing other objectives of shareholders,

ratepayers, and the general public (as well as other system constraints).

This research characterizes uncertainty through a range of approaches, including

statistical analyses, expert elicitations, and econometric modeling. It is among the

first to use a stochastic programming framework in a large-scale energy-economic

model with a wide range of simultaneous uncertainties and many scenarios. The

model is also the first to incorporate upstream emissions from shale gas production

into an energy-economic model that can examine tradeoffs between uncertain life-

cycle costs and environmental impacts of different technologies.

1.3.2 Energy Technology R&D Portfolio Management

Beyond issues of capacity planning, the power sector also contends with the uncertain

availability and performance of technologies, which is influenced by public and private

R&D investment decisions. Additionally, under conditions of deep uncertainty about

climate change, the optimal strategy may not only be a single action like mitigation

but also may involve building the capacity to respond to uncertainty in future periods

through investments like R&D. Although it is a technology-based sector, electric

utilities do not invest heavily in R&D relative to other US industries. Current R&D

spending by investor-owned utilities is only about 0.3 percent of revenues, which

is much lower than the 2.8 percent allocation of the total economy toward R&D

expenditures (Anadon et al., 2011).
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Given the importance of managing technological change for industry, government,

and society, the research in Chapter 6 formulates and employs a novel R&D portfolio

allocation framework. The objective of this research is to use stochastic programming

metrics and tools to inform questions of energy technology R&D strategy.

Uncertainty is a fundamental characteristic of the R&D process. The stochastic

and dynamic aspects of these questions are significant structural features of R&D

strategy, including uncertainty in market and policy conditions, the relationship be-

tween R&D investment and technological outcomes, and the ability to adjust decisions

over time based on learning. This research makes suggestions about how uncertainty

should be represented in the R&D portfolio problem and adds many innovations to

the literature.

This chapter informs questions about how to value technological advances. Mea-

suring the benefits of R&D expenditures typically comes through two steps—namely,

the relationship between R&D portfolio investments and potential outcomes as well

as the valuation of these outcomes. This research investigates R&D success valua-

tions in a sequential decision-making setting, and a novel contribution of the model

is its stochastic diffusion mapping through the two-stage capacity planning model

described in Chapter 3. The key attribute of the model is that, when R&D funding

and first-stage decisions are made, the realizations of other exogenous uncertainties

(e.g., abatement stringency) are unknown, which translates into uncertainty about

diffusion markets for technologies upon which the R&D acts. This approach provides

a more accurate representation of the R&D decision-maker’s dilemma in which alloca-

tion decisions must be made in an uncertain market environment, where prospective

conditions are subject to many contemporaneous sources of uncertainty.

Another objective of this work is to parameterize innovation production functions

using results derived from expert elicitations rather than using ad-hoc values. Pre-

vious innovation production function analyses use stylized values that are the same

across all technologies. In contrast, the work here provides some empirical grounding

for the chosen values that link model representations with on-the-ground expectations

for R&D program characteristics. This trait, combined with the stochastic valuation

model and larger portfolio of R&D programs, suggests that model outputs offer a
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greater degree of normative decision support compared with previous analyses.

An overarching goal of this chapter is to embed the treatment of R&D control

within the broader context of energy modeling. There is a long history of using

energy-economic and integrated assessment models (IAMs) to quantify the benefits

of technological developments but only a limited amount of work that explicitly links

these models with an R&D portfolio framework. The research here leverages the

experience, tools, and insights from the energy modeling community to better under-

stand the relationship between R&D investment decisions and technological change,

market diffusion, and environmental outcomes.

The primary research questions of the R&D portfolio management work include:

• Using the best-available expert elicitations for future technological states and

up-to-date characterizations for other uncertainties, what R&D portfolio strate-

gies will maximize expected welfare?

• How do recommended investment strategies vary based on the assumed decision-

making approach?

• What are the impacts of R&D on private and societal costs as well as on envi-

ronmental outcomes?

1.3.3 Fat-Tailed Uncertainty, Learning, and Climate Policy

The presence of uncertainty is common in energy and environmental decision-making,

especially in formulating policy responses to climate change. Deep structural uncer-

tainty about the climate system combined with tremendous challenges associated

with quantifying the economic impacts of severe climate change pose many inter-

related conceptual, methodological, and ethical difficulties. In the energy modeling

community, “among the subjects that deserve further in-depth investigation, the issue

of uncertainty emerges as, perhaps, the most prominent” (Haurie, Tavoni, and van der

Zwaan, 2012), especially for the economic analysis of climate change. Problems of

global change require more robust tools to characterize and analyze uncertainty than
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conventional approaches offer (Morgan et al., 1999). Although insuring against low-

probability, high-impact climate risks has been a leading justification for mitigation

for many decades (Manne and Richels, 1993), recent developments have refocused

attention on how fat-tailed uncertainty, where probabilities of rare events decline rel-

atively slowly in the upper tail of a distribution, may influence the urgency and degree

of precautionary action that is warranted for abatement measures.

Like the other applications in this dissertation, the recognition of the impor-

tance of uncertainty in climate change economics has outpaced its implementation in

models. IAMs are largely deterministic and focus on expected-value forecasts, using

one-way sensitivities to assess the impacts of uncertain or contentious parameters.9

In the rare instances when uncertainty is more formally incorporated into the analy-

sis, uncertainty propagation techniques are typically used with thin-tailed probability

density functions (Nordhaus, 2008; Hope, 2006). These approaches implicitly assume

perfect information for each simulation run (i.e., implying a learn-then-act approach

in which the uncertain state is revealed before decisions are made). This characteristic

means that such ex-post approaches, while analytically simple, cannot offer guidance

in determining ex-ante hedging strategies. Sequential decision-making frameworks

incorporate uncertainty explicitly and address limitations of foresight by determining

optimal policies in multiple stages based on updated information.

The objective of Chapter 7 is to examine how sequential decision-making frame-

works, concepts, and metrics can be used to inform risk management in climate

policy. Specifically, this work examines the impact of fat-tailed uncertainty about

the climate sensitivity parameter and the potential for learning on optimal near-term

abatement. Computational experiments using this stochastic decision model answer

questions about whether policy recommendations are robust to the specifications of

distributions, damages, and discounting. The focus is on the timing and stringency

of global climate policy and not on questions of mechanism design for coordinating

international efforts to control emissions.
9Another disadvantage of using expected-value or best-estimate forecasts for decision-making is

that such approaches may “inhibit deliberations among individuals with differing expectations and
values, because by definition best-estimate predictions privilege some expectations and values over
others” (Lempert, Groves, and Fischbach, 2013).
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Another goal is to quantify the value of learning and midcourse corrections on

reducing consumption risks imposed by uncertain damages from climate change. In

the presence of strong stock-accumulation inertias and sunk emissions, Weitzman

(2012) assumes that lags involved in climate system preclude the ability to learn

about catastrophic impacts until damages arrive. Other authors (Nordhaus, 2012;

Kousky et al., 2010; Nordhaus, 2009; Yohe and Tol, 2007) have criticized Weitzman’s

assumptions as being unrealistically pessimistic and suggest that the pace of climate

change will allow for the possibility of learning over time, deploying negative emissions

technologies, or using emergency geoengineering if warming is unexpectedly high.

Despite these criticisms, no work has investigated the degree to which assumptions

about learning influence the conclusions of the model in Weitzman (2012). This

research examines the influence of different learning rates on near-term abatement

decisions and discusses the normative implications of considering uncertainty about

the evolution of uncertainty over time.

A high-level motivation for this work is to investigate to what degree policy pre-

scriptions in IAMs are robust to conventional assumptions about thin-tailed probabil-

ities, perfect foresight, and quadratic damages. Forecasts for the benefits and costs of

abatement are predicated on many assumptions, including the response of the climate

system to emissions-driven forcing, severity of economic impacts of climate change,

rate of invention and innovation for abatement technologies, growth rates of emerging

economies, discounting assumptions, and many other factors that are difficult to con-

ceptualize let alone to predict. Since there are many plausible ways to select model

parameters related to scientific knowledge, human behavior, and value judgments,

decision-makers have a difficult time adjudicating between alternatives when there

is little basis for agreement between studies, as stakeholders can rationalize a set of

assumptions to cohere with policies they support on the basis of cultural, financial,

or other considerations.

The research in Chapter 7 provides a unified framework for isolating these ef-

fects and for showing how policy guidance from IAMs may rely strongly on these

assumptions. The sequential decision-making approach used here reconfigures the

policy debate by considering a wider set of potential outcomes and adaptive actions
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for risk management. The results do not propose specific and definitive solutions

to these complex issues but draw general insights, which are useful starting points

in understanding potential modeling limitations and refocusing research attention on

problems related to uncertainty and learning. Ultimately, such integrated assessments

under uncertainty can offer guidance in thinking through bounding questions about

the importance of climate change.

1.4 Dissertation Organization

The three applications discussed in Section 1.3 are linked by the mathematical frame-

work of stochastic programming. Chapter 2 begins the body of the dissertation by

discussing the tradeoffs, benefits, and shortcomings of various approaches to mod-

eling uncertainty and motivates the appropriateness of stochastic programming for

the applications in this dissertation. In addition to defining many of the terms used

throughout the dissertation and formulating metrics for evaluating uncertainty, the

chapter reviews literature related to uncertainty analysis approaches and their appli-

cations in energy modeling with a focus on electric sector capacity planning.

Chapters 3 through 5 comprise the electric sector capacity planning work. Chap-

ter 3 formulates a two-stage stochastic programming model of capacity planning and

dispatch for the US electric power sector. Chapter 4 presents model results for the

dynamics of capacity planning under a range of technological, economic, and policy-

related uncertainties. Chapter 5 analyzes the capacity planning results in the broader

context of uncertainty, learning, irreversibility, and optionality in the power sector.

Chapter 6 introduces a novel stochastic R&D portfolio management framework

and presents results for energy technology R&D strategy in a carbon-constrained

world. Chapter 7 examines the impact of fat-tailed uncertainty about climate change

on near-term abatement decisions using a sequential decision-making framework. Fi-

nally, Chapter 8 offers overarching conclusions and suggests fruitful directions for

future research.

The appendices present additional information on important areas of the disserta-

tion where inclusion in the body would impede the flow of the narrative. Appendix A
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discusses details of an approach for estimating correlated probability distributions for

natural gas and coal prices, which is used throughout the capacity planning work.

Appendix B examines the factors that enhance the reliability of expert elicitations and

discusses unresolved questions about best practices for elicitation protocols. These

insights are applied in a case study to understand the current state of knowledge

regarding the future of gas turbine systems for electricity generation, which is used

as an input to the capacity planning model. Appendix C uses a stylized example to

demonstrate how the value of R&D success can vary based on the decision-making

approach used for capacity planning decisions.
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Chapter 2

Methodological Introduction and

Literature Review

The purpose of this chapter is to situate the modeling framework of stochastic pro-

gramming within the broader terrain of uncertainty analysis. This chapter describes

the tradeoffs, benefits, and shortcomings of various approaches to modeling uncer-

tainty and motivates the appropriateness of stochastic programming for the applica-

tions in this thesis.

The chapter begins with an introduction to the stochastic programming paradigm

and describes its appeal for energy modeling. Sections 2.2 and 2.3 compare stochas-

tic programming with other forms of uncertainty analysis and highlight its strengths

over other sequential decision-making approaches. Next, Section 2.4 provides defi-

nitions associated with the stochastic programming framework, which will be used

in subsequent chapters of this dissertation. After these discussions of uncertainty

analysis approaches and their applications in energy modeling, Section 2.5 reviews

related literature in electric sector capacity planning. This section discusses previous

publications and assesses the novel contributions of the research in Chapters 3–5.

15
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2.1 Stochastic Programming Background

Stochastic programming is a framework for solving decision problems under uncer-

tainty. Determining optimal strategies requires the consideration of unknown parame-

ter values, which are features of nearly all decision problems. This approach generates

more robust decisions than deterministic planning.1 The resulting strategies perform

reasonably well across a wide range of plausible realizations, reflecting both a nor-

mative choice framework and a descriptive criterion that many decision-makers use

under uncertainty (March, 1994).

Like all sequential decision-making approaches (Kann and Weyant, 2000), stochas-

tic programming models find optimal policies during multiple stages over time. These

actions are selected given joint probability distributions over a set of potential out-

comes in subsequent stages.2 This structure captures the dynamic nature of decision

problems where policies are revised as new information becomes available, as in the

cases of capacity planning, induced technical change, and climate policy.

The objective of stochastic programming is to develop hedging strategies. Al-

though these solutions are unlikely to be ideally suited for every state of the world,

these strategies are optimal ex ante and provide adaptability and resilience under a

variety of future scenarios.3 When uncertainty is prevalent and the long-term conse-

quences of near-term decisions are imperfectly understood, resilience allows decision-

makers to shape available options, to cope with the unknown, to learn from errors, and

to exploit new information as conditions change. Thus, the stochastic programming

framework strikes a balance between optimality and robustness.4

The stochastic programming framework is best suited for decision problems that

1Here, robustness is operationalized by minimizing the probability-weighted sum of discounted
costs across all possible scenarios.

2This work adopts a subjectivist Bayesian interpretation of probability in which the probability
of an event is a measure of the degree of belief that the event will occur given all relevant and
available information (Morgan and Henrion, 1990).

3This behavior gives rise to the notion that the early availability of information can improve
performance, which is the basis for the expected value of perfect information in Chapter 3.3.3.

4Optimality-based approaches can be vulnerable to overconfidence but are simpler to construct
and to understand, whereas robust approaches require more analysis yet give a more complete
portrait of risk.
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satisfy a few specific assumptions, as described in greater detail in Section 2.2. The

formulation of a two-stage stochastic program assumes that:

• Known probability distributions can be attached to uncertain parameter values

• The resolution time (i.e., the period when updated information will be available)

is known at the beginning of the time horizon

• The timing of parametric uncertainty resolution is independent of decisions

• All functions are measurable with respect to the sigma-algebra associated with

the probability space of the problem and that all expectations exist (Dupačová,

Hurt, and Štěpán, 2002)

The standard approach to decision problems under uncertainty is to replace ran-

dom parameters by their expected values (or another measure of central tendency) and

to solve the resulting deterministic optimization problem. However, this expected-

value strategy is optimized only for a specific set of conditions, and when considering

the range of possible futures that may come to pass, this solution may be far from

optimal. Disregarding inherently random characteristics of decision problems may

limit the usefulness of the resulting solutions, which are likely brittle. Sam Savage

refers to this notion that “plans based on average assumptions are wrong on average”

as the “flaw of averages” (Savage, 2009).

For energy-related decisions, if planners assume mean values and encounter some-

thing unexpected, they risk imposing economic and environmental burdens on a range

of stakeholders. For instance, Ho Chi Minh City responded to their vulnerability to

routine flooding by undertaking a series of multi-billion dollar infrastructure projects

over the past 15 years. Encouraged to take action by rising sea levels and increased

precipitation caused by climate change, the city viewed these investments as impor-

tant adaptation and risk management tools to cope with an uncertain climate and

with development in low-lying areas. City developers designed canals, pipes, dikes,

river barriers, and gates based on best-guess estimates for future climate change and

carbon dioxide (CO2) emissions. However, climate impacts have exceeded forecasts

in the years since planning began, as some variables are already higher than the
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distant-future design specifications. These surprises were especially damaging due to

increased urbanization in low-density areas, which was partially bolstered by the illu-

sion of safety provided by the infrastructure investments. Consequently, these flood

risk mitigation decisions proved brittle in the face of misspecified predictions and

actually increased the vulnerability of Ho Chi Minh City (Hallegatte et al., 2012).

A second approach to uncertainty analysis is to consider all possible future scenar-

ios and to design decisions that are optimal under each state of the world. Although

this approach performs well when uncertainty can be resolved early or when opportu-

nity costs of delay are low, such decision contexts are rare. Hence, this wait-and-see

approach is not implementable.

A related alternative is to use a heuristic procedure to devise a composite strategy

from multiple wait-and-see solutions. This scenario analysis approach is often cou-

pled with sensitivity analyses to determine the robustness of the resulting solution.

However, this technique is susceptible to the same shortcomings as the expected-value

approach—namely, that the solution may be far from optimal in an expected-utility

sense. These scenario-based approaches are especially inadequate from a decision-

making perspective. Having a multiplicity of strategies that are tailored to specific

states of the world leaves decision-makers in a quandary about how to choose among

alternatives and to develop near-term strategies. The existence of many contradic-

tory scenarios fails to provide unambiguous policy-relevant insights, especially when

no probabilities are attached to these scenarios. Furthermore, the unknown cost of

uncertainty makes it challenging to rank different uncertainties on the basis of their

importance, which is a critical facet of policy analysis and model construction.

Finally, the stochastic programming (or, more generally, sequential decision-making)

framework remedies these shortcomings by identifying a single hedging strategy, which

provides clearer guidance to decision-makers. This approach balances, inter alia, the

risk of waiting to learn more information with the risk of premature action. It ac-

counts for a wider range of probability-weighted outcomes by striking a reasonable

compromise between expected performance and risks from manifold sources of pre-

diction error. Hedging is appropriate if near-term decisions (i.e., those made before
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uncertainties are resolved) are different from expected-value solutions.5

Stochastic strategies create contingency plans that respond to opportunities and

pitfalls through their adaptive framework of midcourse corrections. In this sense,

stochastic programming develops “antifragile strategies” (Taleb, 2012) that not only

reduce the possibility of downside losses but also provide options for upside gains from

volatility.6 This distinction is especially important in the context of energy systems

where decision-makers must contend with many simultaneous uncertainties, including

both negative Black Swans (e.g., devastating natural disasters like Hurricane Sandy

in October 2012 and the Tōhoku earthquake and tsunami in March 2011) and positive

ones (e.g., abundant and economical shale gas reserves). Due to the ineluctability and

pervasiveness of prediction error, the objective of adaptive approaches is to develop

strategies that limit and localize impacts of mistakes and that do not rely on accurate,

agreed-upon forecasts.

There are many factors contributing to the recent boom in applications of stochas-

tic programming methods, especially in non-energy fields (Birge and Louveaux, 2011;

Wallace and Ziemba, 2005). The primary factors are advances in computing tech-

nology as well as in computational and analytical methods for optimizing mathemat-

ical programming models (e.g., decomposition techniques). More readily available

commercial solvers have increased the usability and accessibility of these methods.

For instance, this research uses the DECIS system for solving large-scale stochastic

programming problems, which can employ sophisticated solution strategies while in-

terfacing with the widely used GAMS algebraic modeling system (Infanger, 1999).

It is fortuitous that these computing resources and analytical methods are emerging

concurrently with long-range policy issues related to economic development, the en-

vironment, and public safety, which require such methods to solve decision problems

5As described in Section 2.4, stochastic programming methods are most useful when the re-
sulting strategies are not identical to any wait-and-see deterministic strategies. This characteristic
indicates that optimal energy system and technology research and development decisions are not
easily discernible without tools that treat uncertainty explicitly.

6Taleb contrasts fragile strategies that leave decision-makers “at best unharmed” and robust
strategies that leave them “at best and at worst unharmed” with antifragile strategies that leave
decision-makers “at worst unharmed” (Taleb, 2012).
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under pervasive uncertainty.7

2.2 Comparison of Uncertainty Analysis Approaches

2.2.1 Sensitivity and Scenario Analysis

The two most basic and common treatments of uncertainty are sensitivity analysis

and scenario analysis. Sensitivity analysis assesses the sensitivity of model outputs

to changes in inputs. This approach is commonly implemented by varying uncertain

parameters across their permissible ranges while holding all other values constant

and then determining the direction and magnitude of change for outputs of inter-

est.8 These perturbations can give modelers and decision-makers a sense of potential

variation in outputs when input parameters are misestimated.

Sensitivity analysis can be useful in identifying parameters that have the largest

effect on results and in finding break-even points where optimal decisions change.

For modelers, sensitivity analysis can suggest parameters to treat stochastically and

is a prerequisite to more sophisticated forms of uncertainty analysis.9 This approach

is advantageous due to its intuitive appeal, synergies with model diagnostics, and

straightforward implementation, as it can be performed with little extra computa-

tional complexity or model modifications.

Despite these attractive features, sensitivity analysis suffers from many limita-

tions. The range of values may not reveal the uncertainty involved, especially when

7To illustrate progress in these areas over the past two decades, consider the following passage
fromWilliam Nordhaus’Managing the Global Commons (Nordhaus, 1994), “Programming the DICE
model for five [states of the world] on a PC is moderately straightforward, and solutions on a top-
of-the-line PC take thirty minutes as of summer 1993. Clearly, solving for even a few dozen of the
400,000 [states of the world] would require supercomputers.” This instantiation of DICE had roughly
4,000 nonzero coefficients in the deterministic problem matrix. In contrast, the model described in
Chapter 3 has over 180,000 nonzero elements, 10,000 scenarios for some runs, and takes under 30
minutes to solve on a far-from-state-of-the-art personal computer.

8This approach also can be operationalized by taking the partial derivative of the model output
with respect to an input (Katz, 2002).

9As described in Chapter 3.3.3, sensitivity analysis is complementary to stochastic programming
in establishing first-order bounds on metrics like the value of the stochastic solution, which can guide
the selection of uncertainties.
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random variables are correlated and when models are nonlinear. One-way sensitivities

are typically used for model diagnostics even though interactions between parameters

are frequently important. Since most methods are based on linear approximations,

their conclusions are typically only valid locally and are not suited for highly nonlin-

ear systems. Finally, sensitivity analyses are often predicated on the assumption that

the model structure is correct.

A related treatment of uncertainty is through scenario analysis. Scenario analysis

compares outputs of model runs with different combinations of assumptions and pa-

rameters. The climate community frequently employs scenario analysis (IPCC, 2000)

through the intuitive logics school, which emphasizes informative scenarios that iden-

tify key decision-relevant uncertainties (Lempert, 2012). Like sensitivity analysis,

scenario analysis has a few intuitive and pedagogical advantages, which stem from its

straightforward implementation and low computational effort.

The shortcomings of scenario analysis make it poorly suited for performing rigor-

ous uncertainty analysis. Scenarios are generally not weighted by probabilities, which

makes it challenging to navigate through a multiplicity of feasible scenarios. Ambigu-

ity from the absence of likelihoods leaves decision-makers more susceptible to being

swayed toward a favored alternative, which may be very different from the strat-

egy suggested by a probability-weighted decision framework (Schneider and Kuntz-

Duriseti, 2002).10 Additionally, there is concern that scenario analysis may lead to

overconfidence and underestimation of uncertainty (Morgan, 2011). As more detail is

added to a scenario to enhance its clarity, the availability heuristic suggests that the

verisimilitude of that particular state of the world will increase, which consequently

will increase the outcome’s perceived likelihood while making it more difficult to

imagine other plausible and equally likely outcomes. Furthermore, given that there

are no best practices for scenario design, scenario analysis methods can omit relevant

surprises and discontinuities associated with low-probability, high-impact outcomes.

These omissions may be especially problematic when scenario design focuses on cre-

ating a few detailed, self-consistent storylines (Postma and Liebl, 2005).

10The scenario literature offers supporting evidence for this claim. Many users of the IPCC’s
Special Report Emissions Scenarios use ad-hoc rules for assigning probabilities (since no likelihoods
are given) such as assuming equal probabilities for all scenarios (Parson et al., 2007).
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2.2.2 Uncertainty Propagation and Sequential Decision-Making

There are many different approaches to incorporating uncertainty analysis into large-

scale models. Most techniques can be classified as either uncertainty propagation or

sequential decision-making under uncertainty (Kann and Weyant, 2000).

The more common approach is uncertainty propagation, which involves sampling

from distributions for uncertain parameters, propagating them through a determin-

istic model, and creating output distributions. The simplest implementations of this

approach are Monte Carlo methods, which rely on repeated sampling from joint distri-

butions over uncertain parameters and then propagating uncertainty.11 This method

generates probabilities over outputs of interest or risk profiles for given strategies.

Such outputs provide decision-makers with a sense of risk, which can be important

in contexts with nonlinearities and risk aversion. Uncertainty propagation does not

incorporate learning, since the optimal strategy is only determined once at the be-

ginning of the time horizon.

Although uncertainty propagation techniques can be used with minimal model

modification, making them easy to use with existing deterministic models, these ap-

proaches have a few shortcomings:

• They do not give adequate guidance to decision-makers about selecting strate-

gies before the uncertain state of the world is revealed. Propagation assumes

forward-looking perfect information across the time horizon for each simulation

run (i.e., implying a learn-then-act approach in which the uncertain state is

revealed before decisions are made). This characteristic makes it difficult to

determine near-term hedging strategies, especially when many uncertainties are

considered simultaneously.

• Parameters may contribute to uncertainty but may be irrelevant to decisions,

which is captured by value of information calculations.12 Thus, uncertainty

propagation many not be adequate for identifying policy-relevant parameters.

11Efficient sampling schemes are frequently used with these simulations to lessen the computational
burden associated with complex joint distributions.

12In other words, the objective function value can vary greatly with changes to input parameters,
but the optimal decision variables may be the same.
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• Like sequential decision-making, propagation approaches require the specifica-

tion of joint distributions for all uncertain random variables. Even if model

builders are unbiased in characterizing these distributions, uncertainty quantifi-

cation can be challenging when correlations are present.

Ultimately, propagation approaches make it difficult to translate risk profiles into

actionable insights. These techniques do not incorporate the flexibility of revising

strategies as more information becomes available and realized parameters differ from

their initial expectations. The dimension of adaptability to surprise is not captured

through uncertainty propagation.

In contrast, sequential decision-making frameworks like stochastic programming

identify hedging strategies that balance the risks of premature action with those of

delay given the decision-maker’s current state of information.13 These adaptive deci-

sion models address limitations of foresight by determining optimal policies in multiple

stages based on updated information. This characteristic offers a more robust treat-

ment of uncertainty than propagation models, which select policies once and do not

incorporate learning thereafter.14 The two-stage stochastic programming framework

describes the problem many decision-makers face of identifying optimal short-term

strategies in face of long-term uncertainty while accounting for how learning and

adaptability may impact optimal policies.

Although sequential decision-making frameworks can provide decision support

under uncertainty, such approaches have a few drawbacks:

• These techniques have high computational burdens and costs of complexity

compared with other approaches to uncertainty analysis.15 The curse of dimen-

sionality refers to the multiplicative model growth with the number of stages

and number of scenarios in each stage.

13Uncertainty propagation approaches can be complementary if simulations are used to generate
scenarios, which can then be used as inputs to a stochastic programming framework.

14Note that, although a decision-maker’s information may increase over time, uncertainty does
not necessarily decrease (Hannart, Ghil, and Dufresne, 2013), as discussed in Chapter 7.

15There is also typically a tradeoff between the fidelity to a decision-maker’s problem and the ease
of interpreting the results to extract policy-relevant insights.
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• It is more difficult to convert an existing deterministic model into a sequential

one compared with uncertainty propagation approaches. These changes require

structural modifications. The computational complexity of these more sophis-

ticated optimization models entails a tradeoff between the resolution of the

modeled system and the exhaustiveness of the characterization of uncertainty.

• The learning process is not typically straightforward due to factors like noise,

measurement error, stochasticity, and imperfect knowledge of system dynamics.

Like uncertainty propagation, sequential decision-making approaches focus on para-

metric uncertainty and dodge cumbersome issues of structural uncertainty. Addition-

ally, the complexity of the problem may mean that model construction is delegated

to specialists, which creates a danger that the decision-maker’s understanding of and

commitment to the model results may be lower due to reduced transparency.

2.2.3 Decision-Making Approaches under Deep Uncertainty

Conventional probabilistic approaches characterize uncertainty through joint proba-

bility density functions; however, these frameworks do not address deep uncertainty,

imprecision, or ambiguity in these estimates.16 For decision-making problems under

opacity, there are many ways to describe conditions of deep uncertainty and alterna-

tive decision criteria to managing risk. These frameworks are useful in information-

sparse situations with extended time horizons and long-term impacts (Lempert, Pop-

per, and Bankes, 2003).

When confronted with deep uncertainty, there are a few methods to treat un-

certainty that do not rely on a single joint probability density function. Axiomatic

approaches like belief functions and fuzzy logic offer alternative frameworks that relax

probability axioms to represent the notion that “one can gain or lose confidence in

one of a mutually exclusive set of events without necessarily gaining or losing confi-

dence in the other events” (Morgan et al., 2009). A second method for representing

imprecision is through alternative sets, which may either use a range of probabilities

16Knight (1921) famously differentiates between risk (with well-quantified and knowable proba-
bilities) and uncertainty (with poorly understood and difficult-to-know probabilities).



www.manaraa.com

CHAPTER 2. METHODOLOGICAL INTRODUCTION 25

or non-probabilistic sets of potential scenarios. Finally, scenario-based descriptions of

uncertainty present alternative states of the world but focus on characterizations that

engage the imaginative capacity of decision-makers (Lempert and McKay, 2011).

The literature formulates and applies many different decision criteria under con-

ditions of deep uncertainty. Robust optimization can be either probabilistic or non-

probabilistic but shares the common characteristic of exchanging some degree of op-

timal performance for reduced exposure to risk, much like stochastic programming.

These frameworks focus on robustness over a range of potential conditions and aim to

“illuminate the vulnerabilities of proposed policies” (Lempert, 2012). These charac-

teristics make robust optimization especially advantageous when stakeholders cannot

agree on functional relationships, probability distributions, or valuing outcomes.

Two of the most common non-probabilistic decision criteria are minimax regret

and maximin.17 The minimax-regret approach minimizes the maximum or worst-

case regret, where regret is the difference between the payoff of the best policy for

a specific scenario and the actual payoff. The maximin criterion ranks policies by

their worst-case outcomes and does not incorporate regret. Maximin focuses solely

on downside risk, which results in more conservative policy recommendations com-

pared with minimax regret. Despite their analytical simplicity, these approaches

provide incomplete measures of the consequences of suboptimal planning decisions.

For applications in energy and climate change, there are many plausible values in

the supports of probability distributions associated with low-probability, high-impact

scenarios that would lead to policy recommendations of exchanging an excessive de-

gree of expected returns for lower risk.18 Recent research bridges expected utility

theory with minimax approaches using value-at-risk criteria from the finance litera-

ture, which determines optimal strategies under probabilistically defined uncertainty

given satisficing constraints regarding outcomes in the tails of distributions.

17The premise that some problems are too information-sparse for probabilistic analysis is contro-
versial (Bier et al., 1999).

18There are many well-known pathologies associated with the minimax-regret and maximin ap-
proaches, especially regarding highly unlikely worst-case scenarios (Savage, 1954).



www.manaraa.com

CHAPTER 2. METHODOLOGICAL INTRODUCTION 26

2.3 Sequential Decision-Making Approaches and

Energy Modeling

2.3.1 Adaptive Strategies

The guiding principle behind sequential decision-making is that adaptive systems

should account for future learning, potential for surprises, capabilities of stakehold-

ers, and consequences of suboptimal decisions. As suggested in Section 2.2, sequen-

tial decision-making approaches share the common feature of revising strategies over

time as new information becomes available. This structure requires multiple decision

points that are temporally separated, allowing a decision-maker’s information about

uncertainties to change over time and making midcourse corrections possible.

The analytic need for sequential decision-making approaches in energy, economic,

and environmental modeling is due to a combination of uncertainty and inertia in

these systems. In the absence of uncertainty, decision-makers could formulate an op-

timal response trajectory for the entire planning horizon, which obviates the need for

iterative policies or midcourse corrections. Without inertia, optimal near-term deci-

sions in any period would depend only on the conditions, information, and uncertainty

observed in that particular period, which suggests that corrective actions would be

unnecessary. However, when both uncertainty and inertia are present, strategies may

be revealed to be suboptimal, and adjustment decisions must be made in response to

these changing conditions.

Sequential decision-making models provide a more realistic depiction of problems

related to capacity planning, technology research and development (R&D) manage-

ment, and climate policy than their deterministic, perfect-foresight counterparts. The

sequential paradigm involves anticipation, learning, and adaptability, where decisions

are modified over time in light of new observations. In the context of climate policy,

this ability to redirect decisions is an important component of effective and efficient

policies, as the experiences with early implementation provide valuable information

on compliance costs, response of the climate system, and adaptive capacity. Rather
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than a “large, one-shot, ‘bet-the-planet’ decision” (Weyant, 2008), sequential frame-

works incorporate flexibility into planning decisions, which helps agents to enhance

adaptability and to limit vulnerability.

With very few exceptions, large-scale energy-economic models that are used to in-

form energy and climate decisions do not examine the effects of sequential strategies.

Although there is wide recognition that uncertainty plays a critical role in these do-

mains, the explicit treatment of uncertainty and sequential decision-making has been

restricted.19 The intertemporal optimization structures found in many integrated

assessment models do not incorporate multiple decision stages, which consequently

means that they do not include sequential decision-making structures (Parson and

Karwat, 2011). Myopic frameworks make static optimization decisions during each

time period in response to evolving conditions but do not consider the impacts of

current decisions on anticipated future benefits and costs apart from current rates of

return. Most intertemporal optimization models identify a single decision strategy

over the entire time horizon assuming perfect foresight, which specifies the complete

decision strategy by the forward-looking representative agent and does not account

for the possibility of midcourse adjustments.

Uncertainty analysis in energy modeling typically involves sensitivity analysis or

uncertainty propagation, where exogenous probability distributions are propagated

through deterministic models. These techniques do not contain the learning char-

acteristics of sequential decision-making. The curse of dimensionality makes it chal-

lenging to solve stochastic optimization problems, but these issues are intensified in

the domain of large-scale integrated assessment models, which are often nonlinear

as well. From a formulation perspective, sequential models require the specification

of information structures describing the evolution of uncertainties over time and of

intertemporal structures of decisions (with the potential for dynamic choice sets).

19The Intergovernmental Panel on Climate Change’s Fourth Assessment Report states, “Respond-
ing to climate change involves an iterative risk management process...” (IPCC, 2007).
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2.3.2 Sequential Decision-Making Approaches

Given the value and need for sequential decision-making frameworks in energy-economic

modeling, it is important to adjudicate on the appropriateness of different mathemat-

ical approaches in this context.

The two most common frameworks for modeling and solving sequential decision

problems are stochastic programming and dynamic programming.20 The concepts,

formulations, and solution algorithms for these two approaches were independently

developed at the same time (Dupačová and Sladký, 2002), but despite these similar-

ities, there has been little acknowledgement of the parallels and complementarities

between these sequential decision-making approaches.

Multi-stage stochastic programs are comparable to discrete-time stochastic dy-

namic programming problems in that they deal with dynamic and stochastic deci-

sions (Dupačová, Hurt, and Štěpán, 2002). The primary distinction between these

approaches is the solution concept, implying that selection of an appropriate frame-

work is driven by the structure of problem, available data, and tools for solving the

resulting model. Stochastic programs typically involve problems with many decision

variables (with many potential values) but a limited number of stages. Dynamic

programming is most useful when problems have large numbers of decision stages

but limited state spaces or when uncertainties resolve at different or unknown times.

Thus, the main emphasis for stochastic programs is typically on insights about first-

stage hedging decisions, whereas the primary interest in dynamic programming is the

decision rule itself.

Both approaches also suffer from the curse of dimensionality. For dynamic pro-

grams, the curse results from the number of states and dimensionality of the state

and control spaces. For stochastic programs, the curse of dimensionality is due to the

number of stages and scenarios.

20Other related mathematical frameworks include decision analysis, stochastic control theory,
optimization of discrete-event simulations, and Markov decision processes (Shapiro, Dentcheva, and
Ruszczyński, 2009).
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2.3.3 Benefits and Drawbacks of Stochastic Programming

In the domains of climate change policy and technology R&D strategy, the two-

stage stochastic programming approach strikes a balance between model fidelity and

tractability for formulating and solving problems. A widespread misconception is that

stochastic programming is only useful in modeling contexts with very few uncertain-

ties, and this misunderstanding has likely limited the applications of this approach.

Although this claim may be true of solving deterministic equivalent problems di-

rectly, one advantage of stochastic programming is its ability to use different solution

strategies and to exploit powerful solvers that employ techniques like Benders decom-

position and Monte Carlo sampling with variance reduction techniques (Glynn and

Infanger, 2013; Infanger, 1994). Many integrated assessment and energy-economic

models are known for the high dimensionality needed to represent technology compe-

tition between a wide array of supply- and demand-side technologies (that often have

considerable cost and performance detail), energy carriers, and regional characteris-

tics. This high dimensionality makes technology-rich models well-suited for stochastic

programming settings.

The two-stage stochastic programming approach also has distinct benefits for

model formulation, particularly for energy models. Many uncertainties for energy

systems and climate change (e.g., the timing and stringency of climate policy, tech-

nological characteristics) can be described as long-term, low-frequency uncertainties

(Ryan, McCalley, andWoodruff, 2011). These uncertainties may not occur repeatedly,

and analysts cannot reliably use historical time series data, functional relationships,

or relative frequencies to construct probability distributions for the future.21 For

example, technological breakthroughs are inherently unique, particularly for nascent

technologies, which means that historical data for carbon capture and storage (CCS)

analogs like flue-gas desulfurization may give little relevant guidance for distributions

over future CCS costs (Rai, Victor, and Thurber, 2010). Thus, when past data are

21As pointed out by Weitzman (2009), uncertainties like the climate sensitivity parameter inher-
ently have diffuse distributions. Future realizations of parameter values, particularly those outside of
the range of experience, are not adequately covered in past observations, which makes it challenging
to learn limiting tail behavior through induction using finite historical samples. Chapter 7 discusses
modeling and policy questions about fat-tailed uncertainty in the context of climate policy.
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unavailable or of limited use, modelers often turn to the structured process of expert

elicitations to encode probabilities of individuals with expertise.22

As discussed in Appendix B, expert elicitations for energy technology cost, per-

formance, and R&D have been undertaken in recent years, and research efforts to

integrate and communicate these results suggest that the frequency and detail of

these elicitations will increase in future years. There is extensive experimental litera-

ture suggesting that both laypeople and experts are poor at dealing with correlational

structures (Morgan and Henrion, 1990), which means that uncertainties in elicitations

are often treated as independent random variables.23 In light of this limitation, an

appropriate modeling framework for this class of problem should have as few condi-

tional probabilities as possible (but no fewer). Thus, the formulation of two-stage

stochastic programs makes this framework attractive for energy-economic modeling,

especially since dynamic programming requires the specification of many conditional

transition probabilities.24 The fact that stochastic programming interfaces naturally

with expert elicitations is a strong benefit of this framework and makes it well-suited

for future research.

The stochastic programming framework has many other benefits in areas of model

formulation, implementation, diagnostics, and interpretation. In calculating metrics

for evaluating the importance of various uncertainties, this approach forces model-

ers to “reflect more on the appropriateness of. . . model formulations and parameter

assumptions than might otherwise be the case” (Weyant, 2008) and to make use of

long-neglected diagnostic tools like tornado diagrams. For instance, in order to cal-

culate the expected value of perfect information (EVPI), a modeler must run perfect

22Appendix B discusses energy technology expert elicitations in greater detail and presents an
application for natural gas turbine efficiencies.

23In order to retain some degree of probabilistic dependence while avoiding pitfalls of conditional
elicitations, it is preferable to circumvent the issue by explicitly modeling the cause of the depen-
dency. For instance, if future costs of nuclear power plants are correlated with CCS-equipped coal
facilities, this dependency may be caused by construction cost inflation, which can be incorporated
in the model as an extra parameter.

24Although the dynamic programming setting is more appropriate when decision-dependent uncer-
tainties play prominent roles, stochastic programs can be formulated to accommodate such structures
(Baker and Solak, 2013).
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foresight runs for each possible scenario (i.e., every combination of uncertain parame-

ter values). This exercise implicitly constrains modelers to conduct a high-dimensional

sensitivity analyses to stress test models instead of merely one-at-a-time sensitivities.

Even outside of value of information calculations, these values can quantify how in-

teractive parametric dependencies can influence model outputs (Butler et al., 2013).

Additionally, these outputs provide valuable tools for organizing and prioritizing ar-

eas of inquiry, identifying interdependencies, and promoting a clearer understanding

of the dynamics of these complex systems.

In summary, the stochastic programming framework is typically most fitting for

problems with many decision variables, few stages, and discrete decision points, which

are all characteristics of many energy-economic and integrated assessment models.

Although the stochastic programming approach offer many valuable features to

decision-makers and modelers, this framework has a few drawbacks. First, stochas-

tic programming and other sequential decision-making techniques have substantial

computational burdens due to the curse of dimensionality (i.e., multiplicative model

growth with the number of stages and scenarios). Although this methodological diffi-

culty is extensively documented and can be mitigated in part through state-of-the-art

algorithms (Infanger, 1994), the curse of dimensionality also applies to manipulating,

interpreting, and presenting the results of sequential decision models. The burgeon-

ing size of model outputs makes it challenging to extract decision-relevant insights

as well as to understand and communicate model results. Second, marginal distri-

butions are difficult and time-consuming to assess for many uncertainties, let alone

joint distributions. Some model parameters may be recognized as uncertain though

probabilities may be challenging to quantify, but other uncertainties may be unknow-

able or erroneously assumed to be certain. However, the difficulties associated with

quantifying uncertainty may suggest that a two-stage stochastic programming ap-

proach represents a satisfactory balance between representing risk explicitly avoiding

onerous correlational structures. Another counterpoint to this objection is that even

crude approximations for distributions can aid decision-makers in creating strategic

scenarios and formulating hedging strategies.25

25Parson and Karwat (2011) suggest that, in conditions of deep uncertainty replete with unknown
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2.4 Stochastic Programming Terminology

The most studied and applied stochastic programming models are two-stage linear

programs with recourse, which are used in this dissertation. In the two-stage prob-

lem, decision-makers can make reasonable estimates about the near-term future, but

assumptions about the longer-term future are uncertain. These beliefs are quantified

through probability distributions over second-stage outcomes. Although a more real-

istic approach would account for the potential for making decisions continuously as

information is received, a two-stage approach is more tractable for formulating and

solving. The framework also captures the delay induced by the decision-maker’s dif-

ficulty in separating the true value associated with an uncertain system from limited

and noisy system observations (i.e., distinguishing between short-term variability and

long-term trends).

Uncertain parameters are represented as a set of scenarios or states of the world,

which specifies both the full set of random variable realizations and their correspond-

ing probabilities. This set contains a wide array of potential futures, which are as-

sumed to be mutually exclusive and collectively exhaustive. Probabilities associated

with specific scenarios can be assessed through simulations, theory, statistical analyses

based on historical data, meta-analyses, and expert elicitations.

Stages are distinct from periods in stochastic programming. Periods are intervals

in the time horizon. Stages are sets of consecutive periods that divide the time horizon

based on realizations of uncertainties and information sets of decision-makers.

For two-stage stochastic programs, first-stage decisions (i.e., here-and-now com-

mitments) occur before uncertainties are resolved. Solutions are deemed admissible

if they satisfy all constraints for all scenarios.26 This expected-utility framework as-

sumes that the utility of an uncertain prospect is determined by taking the sum of

unknowns, decision-makers should acknowledge problems of overconfidence in the planning process
and welcome the paradox of “expecting to be surprised.”

26Non-admissible solutions may be valuable in contexts with constraints that may be violated in
a feasible range without significant consequences (Ryan, McCalley, and Woodruff, 2011). Chance or
probabilistic constraints in stochastic programs allow violations with specified probabilities (Birge
and Louveaux, 2011).
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the probability-weighted utilities of potential outcomes.27

The nonanticipativity assumption constrains decisions to be the same under all

scenarios until the uncertainty resolution date.28 This assumption formalizes the no-

tions that decision-makers cannot accurately predict the state of the world ex ante

and that decisions in the current stage do not depend on future realizations of random

variables or on future decisions. Hence, decisions are nonanticipative of future out-

comes and use only past information and beliefs about probabilities of future states.

Implementable solutions satisfy the property that decision variables under all scenar-

ios are indistinguishable during the first stage. In most applications, the first-stage

hedging solution is the most valuable model output to decision-makers, as it informs

near-term decisions and provides adaptive potential for making recourse decisions

once the state of the world has been revealed.

Second-stage (recourse) decisions are made ex post after more information becomes

available to the decision-maker. The second-stage deterministic optimization problem

finds the optimal vector of decision variables after uncertain parameters are observed.

The first-stage stochastic strategy is common to all outcomes, whereas a second-

stage solution is specified for each realized scenario. These recourse decisions can be

considered contingent actions that are taken only when the corresponding state of

the world is realized. The stochastic programing framework assumes that scenario

probabilities are independent of first-stage decisions.

Thus, the optimal stochastic strategy specifies a single first-stage decision vector

and a collection of second-stage decisions, which defines the optimal recourse strategy

under each possible outcome. Calculating the optimal hedging strategy requires the

decision-maker to consider all potential outcomes of all uncertainties, the probabilities

associated with individual outcomes, and the gains and losses of strategies under all

scenarios (including recourse alternatives and irreversibilities). Flexibility is a key

attribute of stochastic strategies and indicates the degree to which a system can

27Kahneman and Tversky (2000) describe how descriptive behavior of choice under uncertainty
can violate this Bernoullian expectation rule. Nonlinear decision weights violate the invariance
assumption, leading individuals to undervalue the reduction of a hazard probability relative to its
complete elimination.

28In two-stage stochastic programs, the uncertainty resolution date refers to the period in which
uncertainty is eliminated and information is revealed about the values of uncertain parameters.
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adapt to many realized scenarios in a cost-effective manner. Adaptation costs can be

viewed as the additional investments in the second stage that are required to adapt

to the realized state of the world. In this sense, stochastic programming minimizes

expected adaptation costs and, by extension, maximizes flexibility.

2.5 Capacity Planning Literature Review

Earlier sections in this chapter discussed frameworks for uncertainty analysis in energy

modeling and highlighted the utility of sequential decision-making approaches with

a focus on stochastic programming, which is the primary mathematical framework

for projects in this dissertation. This section reviews the literature on applications of

stochastic programming in energy modeling with a focus on electric sector capacity

planning. The purposive sample of papers discussed here focuses on the central

articles only and is not an exhaustive survey of all relevant papers. Emphasis is placed

on work that relates to the research methods and application areas in Chapters 3

through 5—namely, models with a bottom-up technological representation, national

scale, and expected-value decision criterion.29

2.5.1 Overview

Although previous sections underscored the limited formal inclusion of uncertainty

in long-term energy models, this dearth is especially prominent for research using

stochastic programming approaches with large-scale, bottom-up models. When em-

ployed, stochastic programming is most frequently implemented in aggregate global

models for simple, ad-hoc modeling exercises with prominent examples including

DICE (Nordhaus, 1994), MERGE (Manne and Richels, 1993), and CETA (Peck and

Teisberg, 1993). The global scope and macroeconomic focus of these studies often

come at the expense of technical detail about the energy system. The exclusion of

such detail makes it difficult to extract insights about capacity planning and dispatch,

specific technological uncertainties, or R&D strategy. This dissertation addresses

29Literature reviews related to R&D portfolio management (Chapter 6) and the impacts of fat-
tailed uncertainty on climate policy (Chapter 7) are found in their respective chapters.
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these concerns by developing an electric sector capacity planning model, which uses

a stochastic programming approach with a high degree of technological detail.

Capacity planning models have a long history in the electric power sector, but gen-

eration expansion planning has only included uncertainty explicitly in recent decades.

Long-range capacity planning for meeting a least-cost objective subject to operational

constraints began in the 1950s alongside developments in mathematical programming

(Massé and Gibrat, 1957). Even this early work suggests that effective capacity plan-

ning should treat uncertainty explicitly. Dapkus and Bowe (1984) present one of the

first applications of stochastic programming to capacity planning in the electric power

sector. The use of stochastic programming in energy models more generally, includ-

ing long-term capacity planning and short-term hydro unit commitment decisions, is

summarized in Wallace and Fleten (2003).

Tables 2.1 and 2.2 summarize the selected literature that will be discussed in sub-

sequent sections. These tables give a sense of the scope of stochastic programming

research related to electric sector capacity planning with technologically detailed mod-

els. The tables include relevant details about the studies, including the model, scope,

aggregation, and uncertainties. The next section reviews stochastic capacity plan-

ning models with cost-minimization structures, and the subsequent section discusses

optimal-growth models.
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2.5.2 Cost-Minimization Models

Cost-minimization models find feasible solutions that minimize the objective function

of discounted energy system costs. Compared with their optimal-growth counter-

parts, cost-minimization models tend to have more detailed representations of energy

technologies but do not capture macroeconomic interactions in as much detail.

The stochastic variant of the MARKet ALlocation (MARKAL) model is the most

popular platform for the technology-detailed, policy-oriented studies in the litera-

ture.30 Kanudia and Loulou (1998) investigate how the uncertainties of economic

growth and mitigation can affect energy system planning for Québec.31 A similar

study by Kanudia and Shukla (1998) incorporates the same uncertainties for the In-

dian energy system and adds elastic demand. Heinrich et al. (2007) assess the impact

of demand uncertainty on near-term decisions in a South African context using multi-

ple objectives. Hu and Hobbs (2010) use stochastic MARKAL to calculate the EVPI,

value of the stochastic solution (VSS), and value of policy coordination given uncer-

tainties about multi-pollutant regulations in the United States (US), resource costs,

and electricity demand. Usher and Strachan (2012) discuss near-term hedging strate-

gies for long-term decarbonization pathways in the UK under uncertainties about

fuel prices and biomass import availability. Bistline and Weyant (2013) demonstrate

the utility of the stochastic programming framework and accompanying metrics using

technological and policy-related uncertainties in the US electric sector as motivating

examples. This paper draws attention to the limitations of stochastic MARKAL and

stresses the need for new tools to better exploit the full range of benefits the stochastic

programming approach can provide. Recent papers have used the stochastic TIMES

model, which is an updated version of MARKAL, to examine uncertainties about

the climate sensitivity parameter and economic development in multi-region, global

settings (Labriet, Loulou, and Kanudia, 2010; Loulou, Labriet, and Kanudia, 2009).

The limitations of stochastic MARKAL are similar to other models employing

stochastic programming in an energy policy context. Regardless of database size,

30An overview of the model can be found in Hu and Hobbs (2010).
31Loulou and Kanudia (1999) examine the same Québec system and compare results with a mod-

ified MARKAL model that uses a minimax-regret criterion.
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stochastic MARKAL restricts the number of stages to two and the number of simul-

taneous scenarios to nine.32 The latter constraint considerably limits the number of

uncertainties that can be considered simultaneously and their degree of detail. The

limited types of parameters that can be treated as random variables in MARKAL is

also restrictive. The formulation only allows parameters like environmental bounds

and demand to be treated stochastically (Kanudia and Loulou, 1999), which elimi-

nates from consideration classes of problems with uncertain objective function coef-

ficients (e.g., capital costs). Additionally, with the exception of Kanudia and Shukla

(1998), the stochastic MARKAL studies do not include price-responsive demand,

which can be limiting when examining the capacity planning problem under an un-

certain climate policy.

Outside of the stochastic MARKAL framework, Krukanont and Tezuka (2007)

analyze near-term investments and the EVPI in Japan under four uncertain policy

regimes with uncertainties about CO2 taxes, demand, and plant operating availability.

Although the analysis considers more scenarios than other studies, the model uses

an extremely short time horizon of 12 years, which is far shorter than the operating

lifetimes of energy sector assets. Thus, the Krukanont and Tezuka (2007) study offers

limited actionable insights about capacity planning decisions under uncertainty.

Finally, Keppo and van der Zwaan (2012) use the TIAM-ECN model to examine

the impact of climate policy and CO2 storage potential. The results suggest that,

if a stringent climate policy is included, this possible scenario dominates the near-

term strategy and that the climate policy uncertainty plays a more important role

in mitigation timing than storage. Like the MARKAL studies, Keppo and van der

Zwaan (2012) only account for a limited range of possible uncertainties and do not

focus on capacity deployment decisions and the associated policy implications.

32Although the TIMES model allows for a maximum of 64 states of the world, the implementation
is still based on directly solving the deterministic equivalent of the problem (Loulou and Lehtila,
2012), which severely limits the degree of model detail.
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2.5.3 Optimal-Growth Models

In addition to cost-minimization models, some papers in the literature examine the

impact of uncertainty on capacity planning using optimal economic growth models

with utility-maximization objectives.

Manne and Richels (1993) are among the first to quantify the impact of uncertainty

on energy decisions in the presence of climate change using a sequential decision-

making approach. Using the Global 2100 model and an uncertain climate policy,

their results show that the optimal near-term CO2 emissions path lies between the

extreme cases and that abatement levels are sensitive to the quality and timing of

climate science research. Their results suggest that the value of perfect (or improved)

information for reducing scientific uncertainty may be quite high and may be upward

of $100 billion for the US. Like the cost-minimization studies, Manne and Richels

(1993) only consider a very limited number of uncertainties and metrics for evaluation

and instead focus on emissions trajectories.

Peck and Teisberg (1993) use the Carbon Emissions Trajectory Assessment (CETA)

model to investigate uncertainty about the climate sensitivity parameter and dam-

age function parameters. They find that information about these uncertainties has a

large value relative to existing research budgets and that resolving uncertainty about

impacts is almost as critical as learning about the climate sensitivity parameter.

The benefits of resolving uncertainty early are considerably larger when suboptimal

abatement is undertaken in the near term, assuming that the climate policy could

be adjusted once more information is available. Again, the study’s restricted con-

centration on climate-related uncertainty comes at the expense of insights related to

technology-specific deployment.

Birge (1995) considers how uncertainty on investment returns for energy tech-

nologies affects economic output, consumption, and emissions under annual CO2 re-

strictions. Using the VSS metric with a modified version of the Global 2100 model,

the author finds that the optimal hedging strategy (i.e., instead of an expected-value

strategy) increases economic output by approximately 1.4 percent annually and also

recommends higher optimal CO2 taxes in early periods. The results also indicate that

an international market for CO2 rights substantially lowers the VSS. Although the
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paper exemplifies how the VSS metric can be used for determining the impact of sub-

optimal planning on macroeconomic variables, Birge (1995) considers a very limited

number of uncertainties and does not analyze how uncertainty affects technology-

specific capacity installation and production decisions.

Bosetti and Tavoni (2009) analyze how innovation uncertainty may change climate

policy recommendations using a stochastic variant of the World Induced Technical

Change Hybrid (WITCH) model with a no-carbon backstop technology whose cost

is a function of R&D spending. Results from an analytical model and WITCH con-

clude that accounting for uncertainty in R&D effectiveness decreases climate policy

costs and increases R&D investments. However, the paper only considers a single

cost-related uncertainty for a stylized technology under a fixed and certain climate

stabilization policy (with an atmospheric CO2 concentration target).

Bosetti et al. (2009) use WITCH to investigate the cost of uncertainty for global

stabilization targets and quantify the economic costs associated with delayed abate-

ment. The paper suggests that short-term inaction is the leading determinant of

welfare losses and increased compliance costs for stringent policies. These results

indicate that a moderate near-term policy would be an effective hedging strategy

until new information about the long-term severity of climate change arrives, which

mirrors other conclusions in the literature (Yohe, Andronova, and Schlesinger, 2004).

The precautionary abatement under the hedging strategy is driven primarily by the

stringent target of 450 ppmv (CO2 only), which is explained by the convexity of

marginal abatement costs. Energy efficiency investments are shown to be optimal

hedges. Overall, the paper’s focus on the macroeconomic impacts of suboptimal

strategies crowds out investigations of technology deployment decisions and does not

account for the effect of other simultaneous uncertainties on utility-scale decisions.

De Cian and Tavoni (2012) also employ the stochastic programming variant of

WITCH with uncertainties associated with CO2 taxes and capital costs for low-

carbon technologies. Like the results in Chapter 4 of this dissertation, uncertainty

about climate policy does not materially impact the first-stage abatement level or

generation but primarily affects the portfolio of new capacity additions. The paper

explores how different levels of uncertainty influence low-carbon capacity investments
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through mean-preserving spreads, which indicates that hedging in nuclear and renew-

ables increases in CO2 price uncertainty (and CCS investments decrease). While the

paper gives a more thorough portrait of how climate policy uncertainty influences

investments in individual technologies, the work ultimately only considers a limited

number of potential policies, uncertainties, and metrics to evaluate the importance

of uncertainty in decision-making.

Durand-Lasserve, Pierru, and Smeers (2010) illustrate how uncertainties about

abatement targets (incorporated as annual CO2 emissions caps) may impact near-

term technology deployment decisions and CO2 prices using a modified version of

the MERGE model. The results show how this uncertainty can impact near-term

capacity decisions and energy-sector prices on regional and global scales. Ultimately,

the focus of the paper is on the relationship between global policy uncertainty, CO2

prices, and emissions trajectories and not on capacity deployment decisions.

2.5.4 Discussion and Contributions

A few common conclusions emerge from comparing the studies discussed in the pre-

vious sections and listed in Table 2.1. First, results in the literature suggest that

sequential decision-making approaches offer decision-relevant insights, which are not

available through scenario analysis or Monte Carlo analysis. Stochastic programming

models of capacity planning recommend strategies that differ from deterministic mod-

els where random variables are replaced by their expected values. Such results imply

that the explicit inclusion of uncertainty is important for decisions, which demon-

strates the utility of sequential decision-making frameworks.33 Second, many studies

point to the importance of climate policy uncertainties. Keppo and van der Zwaan

(2012) conclude that uncertain climate targets dominate uncertainties about CO2

33For instance, Usher and Strachan (2012) show that the stochastic hedging strategy is different
from any deterministic (wait-and-see) solution and is structurally dissimilar from the average of
the scenarios. Similar results are found in studies like Birge and Rosa (1996); Kanudia and Shukla
(1998); Durand-Lasserve, Pierru, and Smeers (2010).
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storage.34 When climate policy uncertainty is included, it seems to impact the port-

folio of deployed technologies more than near-term abatement levels (De Cian and

Tavoni, 2012).

Another common thread in the literature is the low dimensionality of previous

studies. As shown in Table 2.2, models typically consider a very limited number of

uncertainties (with an average of 2.1 per study) and total scenarios (with an average

of 4.7 per study).35 The large number of decision variables and associated computa-

tional burdens have limited previous analyses to simple scenario trees, which prevent

more than a couple uncertainties from being investigated simultaneously. The small

number of scenarios capable of simultaneous representation in models like stochastic

MARKAL restricts investigation of interactions between uncertainties.

The limited number of scenarios capable of consideration is a consequence of the

solving approach. For stochastic linear programs with discrete distributions, the most

common approach is to represent the problem as an equivalent deterministic linear

program and then to solve directly, which is computationally costly for problems with

many possible realizations.36 Two-stage stochastic linear programs can take advan-

tage of their special block structures through a variety of decomposition procedures

(Birge and Louveaux, 2011). When the number of possible realizations of random

parameters is particularly large, approximate solutions can be found through Monte

Carlo sampling with variance reduction techniques (Infanger, 1999).

Table 2.3 shows that many studies in the literature do not take advantage of

metrics for assessing the relative importance of uncertainties. As described in Chap-

ter 3.3.3, metrics like the VSS and EVPI have important implications for decision-

makers and modelers. However, the values in Table 2.3 suggest that only 29 percent

of studies in the sample provide calculations for the VSS, 53 percent for the EVPI,

and 6 percent for the value of control (VOC). Chapter 3.3.3 offers detailed discussions

and mathematical definitions of these metrics.
34Additionally, when the potential for very stringent policy is included, Keppo and van der Zwaan

(2012) conclude that it dominates the hedging strategy.
35The sample mean excludes the Krukanont and Tezuka (2007) paper, which considers notably

more states of the world compared with other studies.
36This approach enumerates all variables and equations into single, large optimization problem.
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Another shortcoming is the use of ad-hoc probability distributions instead of values

based on rigorous modeling efforts. Many studies assume a uniform distribution over

states of the world (i.e., invoking the Laplace criterion) to express an uninformative

prior (Bosetti et al., 2009; Heinrich et al., 2007).

Table 2.3: Metrics used in the selected literature from Table 2.1.

Paper VSS EVPI VOC
Birge and Rosa (1996) • •
Bistline and Weyant (2013) • • •
Bosetti and Tavoni (2009)
Bosetti et al. (2009)
De Cian and Tavoni (2012)
Durand-Lasserve, Pierru, and Smeers (2010)
Heinrich et al. (2007) •
Hu and Hobbs (2010) • •
Kanudia and Loulou (1999) • •
Kanudia and Shukla (1998)
Keppo and van der Zwaan (2012)
Krukanont and Tezuka (2007) •
Labriet, Loulou, and Kanudia (2010) •
Loulou, Labriet, and Kanudia (2009)
Manne and Richels (1993) •
Peck and Teisberg (1993) •
Usher and Strachan (2012) •

Notes: VSS = value of the stochastic solution; EVPI = expected value
of perfect information; VOC = value of control

Though some studies have made uncertainty analysis a central focus of capac-

ity planning research (as illustrated in literature review above), the research in this

dissertation is the first of its kind to investigate many uncertainties simultaneously

by bridging state-of-the-art operations research techniques and a large-scale energy

model. This research uses the DECIS system (Infanger, 1999), which is designed

to use powerful decomposition techniques to solve stochastic programs with many

scenarios. This modeling choice allows the research in Chapters 3 through 5 to incor-

porate a range of uncertainties with many thousands of scenarios.
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The work here also proposes and applies a range of complementary metrics for

quantifying the importance of uncertainty, which can indicate the value of reducing

uncertainty and of using stochastic hedging approaches. These metrics provide a

quantitative means of evaluating the significance of using sequential decision-making

approaches for energy modeling in an environment of transition, where near-term

decisions by economic agents seem to depend strongly on many uncertain factors.

Another contribution of this work is to offer rigorous quantifications of distribu-

tions for technological, economic, and policy-related uncertainties instead of using

ad-hoc probabilities. This characteristic exhibits a higher degree of fidelity to the

real-world investment problems of utilities and generators.

Additionally, previous studies often present numerical results from data-driven

models but provide limited analysis and intuition for the underlying dynamics be-

hind these outputs. In contrast, the work here analyzes results in greater depth in

terms of the optionality of investments, which leads to insights about uncertainty,

learning, and irreversibility in electric power sector. This research is also the first

to incorporate parameters and uncertainties related to shale gas within a modeling

framework that considers such risks explicitly. This feature provides unique and

policy-relevant insights into the potential role of unconventional natural gas in the

US electric power sector.

Other modeling contributions, which are discussed in greater depth throughout

Chapter 3, include construction lead times, price-responsive demand, and the possi-

bility of construction cost inflation.

2.6 Summary

This chapter described how more sophisticated treatments of uncertainty and the

inclusion of sequential decision-making, especially through stochastic programming,

can give insights into many dilemmas faced by decision-makers in energy and envi-

ronmental domains. The discussion of stochastic programming illustrated the value

of hedging strategies, which protect against a variety of risks and account for costs of

midcourse corrections. The literature review discussed research gaps in applications
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of stochastic programming for electric sector capacity planning and highlighted con-

tributions of the research in this thesis. Many of these contributions are presented in

the context of model formulation and construction in the next chapter.
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Chapter 3

Model of Capacity Planning under

Uncertainty

Capacity planning in the electric power sector is well-suited to the stochastic program-

ming paradigm, where strategies adjust over time as new information becomes avail-

able about technologies, resources, and polices. Decisions about capacity expansion

and operation take place against long and highly uncertain planning horizons. Uncer-

tainties about developments in the system environment impact the cost-effectiveness

of planning decisions, particularly for utilities whose long-lived and essentially irre-

versible capital investments are designed to last many decades. The long lead times

and lifetimes of energy assets mean that the environments in which power plants come

online and operate may be very different from the ones in which they are planned.

Hence, suboptimal near-term decisions that do not account for a range of potential

fuel prices and environmental policies, for instance, can cost ratepayers, investors,

and taxpayers and have important environmental implications.

Planning in the United States (US) electric power industry has been shrouded in

substantial uncertainty in recent decades, and the simultaneous challenges with which

the sector must grapple are only expected to increase in the future. Progressively

stringent environmental policies, especially related to climate change, may require

emission controls alongside early retirements and fuel switching. Complying with

federal and state regulations must happen while utilities concurrently struggle with

47
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an aging fleet of generators and abrupt changes in the economics of fossil fuels due

to the expansion of unconventional natural gas development. These factors make it

even more important for decision-makers to develop strategies that hedge against a

variety of possible futures and that explicitly consider both the expected costs and

robustness of proposed plans.

This chapter formulates a two-stage stochastic programming model of capacity

planning for the US electric power sector. The motivations of this model are to

examine how technological, economic, and policy-related uncertainties can impact

near-term planning decisions and to quantify the value of explicitly incorporating

uncertainty and flexibility in the decision-making process. In addition to providing a

comprehensive framework for analyzing adaptive management strategies, this model

is among the first to use a stochastic programming framework in a large-scale energy-

economic model with a wide range of simultaneous uncertainties and many scenarios.

The model is also the first to incorporate upstream emissions from shale gas produc-

tion into an energy-economic model that can examine tradeoffs between uncertain

life-cycle costs and environmental impacts of different technologies.

This chapter presents the stochastic capacity planning and dispatch model by first

formulating the deterministic version and discussing related framing assumptions in

Sections 3.1 and 3.2, respectively. Section 3.3 describes the two-stage stochastic

programming model and the definitions for metrics to quantify the importance of un-

certainty. Finally, Section 3.4 considers the characterization of uncertainties included

in the analysis.

3.1 Deterministic Capacity Expansion Model

This section discusses the development of an intertemporal capacity planning opti-

mization model of the US electric power sector that addresses the aforementioned

research questions. The discrete-time model determines optimal capacity investment

and production decisions for the aggregate US electric sector between 2010 and 2050

in five-year increments with three load segments per year.1 The segments create a

1The base year is 2010, which is used for calibration. The first projection period is 2015.
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piecewise approximation of the load duration curve and preserve total annual gener-

ation and peak-load characteristics. The model uses a partial equilibrium framework

with exogenous prices for most fuels. Data for the model come from a variety of

public sources, as shown in Table 3.1.

Table 3.1: Data sources for capacity planning model inputs.

Data Source
Capital and O&M costs EIA (DOE/EIA, 2010)
Existing capacity Form EIA-860 (DOE/EIA, 2011c)
Availability and capacity factors EPA National MARKAL Database 2010
Fuel prices EIA Annual Energy Outlook (DOE/EIA, 2011a)
Load Based on Form EIA-860 (DOE/EIA, 2011c)

The model assumes that capacity installation and electricity production decisions

are coordinated among utilities and generators. In the core deterministic model,

utilities determine the path of investment and capital stock that minimizes the sum

of discounted energy system costs for all capacity blocks during all periods while

satisfying power system constraints.2 The mathematical description of the model in

this section uses the following sets and corresponding index notation:

Sets and Indices

t ∈ T time periods in planning horizon

i ∈ I generation technology types

j ∈ J load segments (i.e., subperiods in the load duration curve)

s ∈ S steps in the piecewise demand curve

The decision variables and parameters in the objective function are:3

2The model uses a discount rate of five percent unless otherwise noted to represent the market
rate of return on capital.

3Decision variables for new capacity investments are continuous. The model does not include
lumpy investments (i.e., large, discrete investments that are typically restricted to fixed sizes),
which would require a mixed-integer formulation. The linear-programming formulation also does
not account for economies and diseconomies of scale, which can be important in plant sizing decisions.
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Decision Variables

xt
i new capacity investment of generation technology i decided at time t (GW)

ytij dispatched capacity of type i during load segment j at time t (GW)

wt
i installed capacity of type i available at time t (GW)

ut
s reduced demand from step s in the demand curve at time t (GW)

Parameters

δt discount factor at time t

cti capital cost for type i at time t ($/kW)

∆i construction delay for type i (years)

f t
i total dispatch costs for type i at time t ($/kWh)

τ tj duration of segment j at time t (hours)

gti maintenance costs for type i at time t ($/kW), including grid integration

pts economic cost of reduced demand from step s at time t ($/kW)

Given these variables and parameters, the linear cost-minimizing objective func-

tion (expressed in million $) for the deterministic capacity planning problem is:

�

t

δt
�
�

i

ctix
t−∆i
i +

�

i

�

j

f t
i τ

t
jy

t
ij +

�

i

gtiw
t
i +

�

s

ptsu
t
s

�
(3.1)

Thus, the four primary constituents of total costs are capital costs, dispatch costs,

maintenance costs, and costs associated with reduced demand.4

The model explicitly represents a broad range of electricity generation technolo-

gies, including various generations of nuclear power, solar and wind technologies,

electricity from biomass, and multiple forms of fossil-based generating technologies

with a variety of fuels and carbon capture options. Technological cost and perfor-

mance characteristics are exogenous inputs to the model, since the capacity planning

formulation does not incorporate endogenous technical change. The model uses a

4Dispatch costs for preexisting and newly constructed generators are the sum of the variable
operation and maintenance costs, fuel costs, and pollutant taxes. For carbon dioxide (CO2) transport
and storage costs, a piecewise supply curve for CO2 storage is incorporated into the model and
calibrated using data from Dooley et al. (2004).
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vintaging structure to ensure that technological assumptions for a given time apply

only to new deployments in that period and to create more realistic capital turnover

and retirement dynamics.

The model incorporates a wind cost supply curve with increasing cost in deployed

capacity. This curve accounts for the variable quality of wind resources in different

regions of the country, heterogeneity in siting costs and availability, and interregional

(and intraregional) transmission capacity constraints.5

All model variants include the following constraints:

• Load balancing (market-clearing condition)

τ tj

�
�

i

ytij − ζtj

�
= τ tj

�
dtj −

�

s

ut
s

�
(1 + αt) ∀t, j (3.2)

where ζtj represents net international exports during load segment j at time t

(GW), dtj is the reference demand level (GW), and αt is a factor that represents

both transmission losses and a reserve buffer. This constraint ensures that de-

mand is met in each subperiod and assumes that economical, grid-scale storage

is not available.

• Dynamics of capital addition, turnover, and retirement

wt
i = wt−1

i + xt−∆i
i − xt−∆i−Li

i ∀t, i (3.3)

where Li is the lifetime of type i.

• Production capacity bounds

ytij ≤ atijw
t
i ∀t, i, j (3.4)

where atij represents the product of the availability factor (i.e., ratio of the

amount of time a generator can produce electricity in a given period to the

5The curve is based on outputs from the Electric Power Research Institute’s US-REGEN model,
which endogenously determines transmission builds using detailed regional wind resource data, an
hourly dispatch model, and trade between regions through cross-border transmission (Niemeyer
et al., 2012).
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period’s duration) and capacity factor (i.e., ratio of the actual output of a

generator to the available output at its full nameplate capacity) for type i during

segment j at time t. This constraint mathematically formalizes the notion that

unit dispatch cannot exceed the available capital stock.

• Demand reduction costs

pts = pt0
�
dtj
�− 1

ε

�
dtj −

s

n
r̄dtj

� 1
ε ∀t, s (3.5)

where r̄ is the maximum demand reduction (as a percentage of the reference

value), n is the total number of steps in the stepwise linear representation of

the aggregate demand curve, and ε is the own-price elasticity of demand at the

end-use level.6

• Investment constraints

xt
i ≤ x̄t

i ∀t, i (3.6)

where x̄t
i represents the upper limit on new capacity investment of technology

i at time t. These upper bounds on expansion are based on current pipeline or

other technological constraints and signify real-world frictions for new capacity

installations. These expansion constraints take the form of annual limits on

investment in specific technologies (e.g., carbon capture is assumed to be un-

available before 2020) but also of cumulative bounds for technologies like wind,

which has resource and siting constraints.

• Non-negativity constraints

xt
i, y

t
ij, w

t
i , u

t
s ≥ 0 ∀t, i, j, s (3.7)

Since the electric power sector is characterized by long-lived and expensive invest-

ments, many technical and economic factors can contribute to the retirement of its

costly generating assets. Retirements occur in the model through three mechanisms.

6This stepwise linear formulation of price-sensitive demand represents only price-induced energy
conservation and efficiency, since autonomous conservation is implicitly included in the baseline load
growth forecast. For a more thorough explanation of this approach, please refer to Kanudia and
Shukla (1998).



www.manaraa.com

CHAPTER 3. CAPACITY PLANNING MODEL 53

First, capacity may retire endogenously through economic drivers when maintenance

costs for units exceed their anticipated economic benefits. Second, units that are

online at the beginning of the time horizon are likely to be fully depreciated before

the end. These exogenous lifetime constraints for residual capacity are incorporated

through an upper bound on the percentage of units of a particular type that are

online in a given period. Finally, the third mechanism for retirements occurs when

new capacity reaches its operating lifetime during the time horizon of the model run,

which also represents an exogenous constraint based on unit lifetimes.

Optional constraints for model runs include climate policy constraints (cap and

trade, carbon tax, or cumulative emissions cap), federal renewable portfolio standards,

target wind penetration, constraints on investments for limited technology portfolio

runs, and constraints to fix decision variables based on a reference run.

3.2 Assumptions

3.2.1 Utility Perspective

The capacity planning problem is framed from the perspective of utilities and genera-

tors in the aggregate US. The model assumes that capacity installation and electricity

production decisions are centrally coordinated among all utilities and generators. This

frame is akin to the representative agent assumption in many integrated assessments

models, which posits a single decision-maker who has access to all of model’s required

input data and the complete authority to implement the model’s recommended de-

cision strategy.7 Agents (i.e., utilities and generators) are endowed with identical

beliefs about uncertain parameters in the capacity planning problem. The aggre-

gate national focus is common among capacity planning models, which frequently

adopt nonspatial frameworks where decisions about plant locations and investments

in transmission equipment are excluded from the model.

7Although this assumption is partially true for production decisions on a regional level (i.e., in
deregulated electricity markets where unit commitment decisions are determined by an Independent
System Operator), it is not true on a national level for production decisions or for capacity planning
decisions. In reality, capacity planning and dispatch decisions are decentralized and made by many
heterogenous market participants.
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This coordinated formulation provides a benchmark for system efficiency, which

is valuable from a normative perspective even if it is unlikely and incomplete from

a descriptive one. It serves as a benchmark for comparison much like competitive

markets in welfare economics. By identifying the optimal cooperative outcome, the

optimization model provides targets against which actual outcomes can be measured

assuming that estimations of uncertainties are not systematically biased.8 The coor-

dinated, single agent model used here greatly simplifies the formulation of the opti-

mization problem, which precludes the need for significant informational assumptions

about utilities and generators.

As suggested by Equation 3.1, the objective function represents the sum of dis-

counted systems costs and assumes risk neutrality on the part of the aggregate

decision-maker. Examining aggregate system behavior from the perspective of a cen-

tral utility planner makes the assumption of risk neutrality more plausible, because

potential losses only represent a small fraction of overall wealth. The rationale is

similar to the default assumption of risk neutrality for government projects described

in the Office of Management and Budget’s Circular A-4, which states that risk neu-

trality should be used unless reasonable grounds exist for alternate assumptions of

risk aversion (OMB, 2003). This recommendation is especially relevant for the social

optimizer perspective of the research and development (R&D) portfolio management

work in Chapter 6.

Since optimal strategies depend strongly on the definition of the decision-makers

and their framing of the decision problem, the utility perspective of the capacity

expansion model has important implications for the formulation of the optimization

problem and characterization of uncertainty. The objective of utilities and generators

is to minimize cost while meet a variety of technical and economic constraints, which

differs from social optimizers whose goal is to maximize the sum of producer and

consumer surplus.9 Thus, utilities do not account for the social cost of carbon in

8Stochastic dynamic programming research (Botterud, Ilic, and Wangensteen, 2005) suggests
that decentralized decision-making for investments in generating capacity tends to underinvest in
baseload capacity compared with centralized decision-makers.

9Transportation-related technologies are not included in this formulation. The utility frame for
the capacity planning problem only includes transportation indirectly through the costs of serving
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their objective function but only the portion of the externality that is internalized

through policy. This distinction has significant implications for defining the climate

policy uncertainty, including the selection of the state space under consideration and

the probabilities attached to outcomes. Utilities consider climate policies themselves

to be uncertain, whereas social optimizers consider the social cost of carbon to be

uncertain. A limitation of other stochastic programming models of electricity capacity

planning, as discussed in Chapter 2.5, is that they assume equivalence between the

social planner’s problem and the utilities’ problem. Here, it is not assumed that the

optimal climate policy will always be adopted to balance the marginal benefits and

costs of mitigation.

3.2.2 Learning

There are a few types of learning, as described by Kolstad (1996) and Kann and

Weyant (2000):

• Autonomous (passive) learning uses the passage of time to reduce uncertainty

through simple observation. The exogenous arrival of information may occur

at one time (as in this work, Manne and Richels (1993), and Nordhaus (1994))

or gradually over time (as in Kolstad (1996)).

• Active learning (i.e., learning from experience) uses observations on the states

of a system to gain information about uncertainty. This type of learning mon-

itors the impacts of decisions on variables of interest to gain knowledge about

uncertain parameters. For many issues in energy and environmental policy, ac-

tive learning experiments are challenging due to detection difficulties, time lags,

and irreversibilities.10

increased demand from electrified vehicles, which is considered in the sensitivity analysis in Chap-
ter 4.2.6. The results of Usher and Strachan (2012) indicate that near-term hedging decision related
to transportation are very similar to the deterministic, expected-value strategies.

10For instance, Kelly and Kolstad (1999) investigate how perturbing greenhouse gas emissions can
convey information about climate-related uncertainties. They find a “tradeoff between the expected
benefits of controlling emissions and the resolution of uncertainty,” since emissions controls lead to
slower learning.
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• Purchased learning occurs when knowledge can be obtained through mecha-

nisms like research. The optimal expenditure level on purchased learning de-

pends on the costs, benefits, and uncertainties of information gathering in a

specific decision context.

Stochastic programming frameworks typically represent autonomous learning. The

information structure for such two- or three-stage models contains priors on states

of the world, a vector of probabilities associated with receiving specific messages,

and ex-post probabilities for states of the world conditional on specific messages. Al-

though ex-ante probability distributions are known, the ex-post marginal distribution

is known only after observations are made at the onset of the second stage.

Thus, the two-stage capacity planning model formulated in this chapter and the

corresponding results in Chapters 4 and 5 involve autonomous learning with perfect

information that arrives during a single period instead of gradually over time. Chap-

ter 6 considers the modeling and policy implications of purchased learning in the

context of energy technology R&D portfolio management.

3.3 Two-Stage Stochastic Programming Model with

Recourse

The linear programming model discussed above computes the optimal investment

and operational strategies for the deterministic capacity expansion problem. Under

perfect information, this solution provides a lower bound on discounted costs given

a particular scenario. However, due to the difficulties associated with predicting

the outcomes of uncertainties introduced in Section 3.4, it is unrealistic to assume

that a strategy that is optimized for a given scenario will be optimal under a range

of realized states of the world. Disregarding inherently random characteristics may

limit the usefulness of solutions designed using deterministic approaches.
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3.3.1 Formulation

As discussed in Chapter 2, stochastic programming techniques can be used to compute

optimal hedging strategies in problems with uncertain data and to provide contin-

gency plans that adapt to realizations of random variables (Beale, 1955; Dantzig,

1955). These solutions perform reasonably well under a variety of plausible scenarios.

The basic two-stage stochastic program with recourse (Birge and Louveaux, 2011;

Infanger, 1994) in a cost-minimization setting can be formulated as:

min z = cTx+Eωf
ωyω

s.t. Ax = b

−Bωx+ Dωyω = dω

x, yω ≥ 0, ω ∈ Ω

Ω set of all outcome paths

ω ∈ Ω state of the world

x vector of first-stage decisions

y vector of second-stage (recourse) decisions

Here, all values corresponding to objective function coefficients (i.e., the c vector)

and first-stage constraints (i.e., the A matrix and b vector) are known with certainty.

The second-stage objective coefficients (i.e., the fω vector) and parameters in the

constraints (i.e., the Bω and Dω matrices and dω vector) are unknown when utilities

make first-stage decisions and are characterized only by discrete probability distribu-

tions over potential outcomes.11 The second-stage parameters are treated as random

variables with outcomes denoted by ω with an associated probability p(ω). Every

random element depends jointly on these scenarios or states of the world.

This framework requires the specification of a full set of random variable real-

izations and the corresponding probabilities of occurrence. The set Ω represents

11B is often called the transition matrix, and D is known as the technology or recourse matrix.
The superscript on the second-stage vector yω makes explicit that the choice of recourse decision
variables depends on the realization of scenario ω.
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a multiplicity of potential futures and contains a full panoply of outcomes from the

uncertainties in Section 3.4. Realizations of random variables, designated by the sym-

bol ω, are called scenarios or states of the world.12 Outcomes of Ω can be grouped

into subsets known as events with a σ-algebra F ⊆ Ω. The probability measure

P : F → [0, 1] on the space (Ω,F) is a real-valued function that satisfies the count-

able additivity property and P (Ω) = 1. Thus, the mathematical triplet (Ω,F , P )

represents the probability space for the model.

The objective is then to identify a point in the space of all admissible values of

decision variables that corresponds to the extremum of the objective function. In this

case, utilities and generators are minimizing the expected sum of discounted energy

system costs subject to the many techno-economic constraints of the energy system.

The optimal first-stage strategy minimizes expected costs, which consist of first-stage

costs cTx and the expected costs from recourse decisions Eωfωyω (i.e., the penalty

for correcting first-stage decisions after uncertainties are resolved).

3.3.2 Solution Approaches

In decision contexts under uncertainty, two important questions for decision-makers

and modelers are:

• How much should decision-makers be willing to pay for information about un-

certain quantities?

• What is the value of incorporating uncertainty explicitly in the decision-making

process instead of using a deterministic approximation?

Stochastic programming settings provide convenient mathematical frameworks for

defining and quantifying answers to these questions.

Before discussing these metrics used to evaluate the impacts of uncertainty, it is

useful to distinguish between three approaches for solving decision problems under un-

certainty (Infanger, 1994). The wait-and-see (learn-then-act) approach assumes that

12Again, although decision-makers cannot completely observe the path of uncertain parameter val-
ues (i.e., the random element ω) when making decisions, this framework assumes that the probability
distributions over outcomes are known.
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uncertainty is resolved and the outcome ω ∈ Ω can be observed before selecting the

optimal decision vector x (Mandansky, 1960). This solution corresponds to a scenario

analysis problem (i.e., where uncertainty has been removed and the decision-maker

solves for different values of ω) and suggests that perfect information is available

before decisions are made. The problem can be formulated as:

zω = min f(x,ω)

s.t. x ∈ Cω ⊆ Rn

with the wait-and-see solution expressed as xω ∈ argmin {f(x,ω) | x ∈ Cω}. The

expected cost with perfect information can be found by taking the expected value

over all possible scenarios: zws = E zω =
�

ω∈Ω zωp(ω). The problem with this

approach is that the solutions are not implementable, which means that outcomes are

superoptimal and decisions cannot be regretted ex post. Although the assumption that

learning will resolve uncertainty completely is unrealistic in many contexts, the wait-

and-see approach serves as a valuable conceptual benchmark against which expected

costs of other strategies can be measured and compared, which makes it the basis for

value of information calculations.

Second, the here-and-now approach finds a solution x∗ that hedges against all

possible contingencies ω ∈ Ω that may occur in the future.13 The optimal stochastic

solution addresses the decision problem where a decision-maker cannot completely

resolve uncertainty before acting, which closely resembles many decision contexts.

This decision is made before observing the outcome from Ω and solves the problem:

z∗ = min Eωf(x,ω)

s.t. x ∈ Cω =
�

ω∈Ω
Cω

where the stochastic solution is expressed as x∗ ∈ argmin {Eωf(x,ω) | x ∈ ∩Cω}.
The solution x must be feasible for all scenarios ω ∈ Ω. The expected cost of the

13This is also called the act-then-learn approach in problems without recourse actions and the
act-then-learn-then-act approach when recourse actions are available in the second stage.
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stochastic solution is z∗ = min
x

Eωf(x,ω). The difficulty with this approach is its

computationally intensive nature.

Finally, the expected-value approach replaces the stochastic parameters by their

expected values or another measure of central tendency like the median or mode.14

This approach sidesteps uncertainty by using a single set of input parameters and

solves the problem:

ẑd = min f(x, ω̄)

s.t. x ∈ C ω̄

where the expected-value solution is xd ∈ argmin {f(x, ω̄) | x ∈ C ω̄} and ω̄ = Eω =
�

ω∈Ω ωp(ω). The expected cost of the expected-value solution is zd = Eωf(xd,ω).

Much like the wait-and-see approach, the expected cost of the expected-value solution

can be found using a deterministic model. This approach can be beneficial due

to its computational ease in formulating and solving a deterministic problem that

approximates the actual decision problem. However, this simplification may exclude

critical dynamics of the uncertain system and may perform poorly in expectation, as

quantified through the value of the stochastic solution.

Figure 3.1 compares the expected costs of the expected-value (zd), stochastic (z∗),

perfect information (zws), and control (zc) strategies.15 The figure also illustrates the

metrics discussed in Section 3.3.3.
14If the probability density function is roughly symmetric and unimodal, the choice of a measure

of central tendency (i.e., mean, median, or mode) does not make a substantial difference in re-
sults. However, policy-relevant uncertainties in many system involve distributions with nonneglible
skewness and kurtosis.

15Mandansky (1960) proves that ẑd ≤ zws ≤ z∗ ≤ zd using Jensen’s inequality and the convexity
of the objective function.
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Objective function  
value (cost) 

VSS EVPI 

VOC 

wait-and-see 

here-and-now (stochastic) 

expected-value 

control 

zws = Eωz
ω

zc = min
ω

�
min
x

f(x,ω)
�

z∗ = min
x

Eωf(x,ω)

zd = Eωf(xd,ω)

Figure 3.1: Number line comparing expected costs under different decision-making
approaches. The spacing between values is illustrative.

The input parameters for the expected-value approach do not have to be the expec-

tations of the random variables in a model. Instead, this reference or best-estimate

scenario can consist of any single nominal value for all input parameters based on

some central measure as defined by the decision-maker. Thus, the reference scenario

approach can be interpreted as a heuristic strategy that uses approximations for pa-

rameter values. Many decisions are not made by explicitly accounting for uncertainty

in sophisticated analytical models but are informed by a combination of experience,

rules of thumb, ad-hoc heuristics, and luck. As described in the results in Chapter 4,

the selection of this reference case can make a large difference in calculating the value

of the stochastic solution.

There are many reasons why a decision-maker may choose to use a set of param-

eters that differs from expectations of random variables:

1. The decision-maker may not be aware of an uncertainty or may not consider

the parameter to be uncertain and consequently does not include this possibility

in its calculations. For instance, public acceptance uncertainties surrounding

large-scale CO2 storage is rarely incorporated into capacity planning analyses.

With many simultaneous uncertainties with which to contend, decision-makers

can be overwhelmed with the number of factors that must be taken into consid-

eration. The result may be to adopt more lax tools for incorporating secondary
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uncertainties into the planning process.

2. The decision-maker may be aware of an uncertainty but does not have the time

or resources to characterize probability distributions and then to calculate the

expectation explicitly. As a result, planning may use best guesses instead of

expected values.

3. The decision-maker may be aware of an uncertainty and have the resources to

quantify the expected value, but cognitive heuristics and biases may distort the

distribution from the “true” distribution. For instance, optimism biases could

underestimate planning and operational costs (Kahneman and Tversky, 1982),

or overconfidence may exclude important tail events (Tversky and Kahneman,

1982). Perception and management of risk can be distorted by a range of

biases, which consequently can impede a decision-maker’s ability to quantify

and prioritize risks accurately.

4. The decision-maker may be aware of an uncertainty and have an unbiased dis-

tribution over possible outcomes but may view that uncertainty as endogenous

with (partially) controllable outcomes. For instance, a utility or generator may

plan under the assumptions of no climate policy or a lenient one, believing that

they can influence or indefinitely delay carbon-pricing policies or can achieve

special exemptions.

3.3.3 Metrics

The importance of uncertainties is assessed through three metrics: the expected value

of perfect information (EVPI), value of the stochastic solution (VSS), and value of

control (VOC). Of the limited energy modeling research that uses a stochastic pro-

gramming framework, few studies perform EVPI calculations and even fewer incor-

porate VSS metrics, as discussed in Chapter 2.5. No studies explicitly use the VOC

metric or draw attention to its relation to R&D activities. The underutilization of

these metrics neglects important opportunities for policy insight and model develop-

ment afforded by stochastic programming.
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This section defines these metrics mathematically and describes how modelers can

exploit them to improve policy recommendations as well as model development and

diagnostics, as demonstrated Chapter 4.

Expected Value of Perfect Information

First defined by Raiffa and Schlaifer (1961), the EVPI compares the expected costs of

the stochastic and wait-and-see solutions and represents the expected change in the

objective function value if perfectly accurate forecasts are available prior to first-stage

decisions.16 The EVPI has important implications for decision-makers in placing an

upper bound on their willingness to pay for information-gathering activities.17 This

value can help to establish limits during the budget allocation process in support of

research programs to improve knowledge of uncertainties (e.g., forecasting research).

It quantifies the potential value added from determining which outcome will actually

occur, which avoids losses from irreversible investments and opportunity costs from

delay. The EVPI is mathematically defined as:

EVPI ≡ z∗ − zws

= min
x

Eωf(x,ω)− Eω

�
min
x

f(x,ω)
�

The schism between the here-and-now and wait-and-see approaches arises from the

fact that it is unlikely for a single solution to be both feasible and optimal for every

scenario. In this sense, the EVPI can be interpreted as the cost of uncertainty incurred

by a decision-maker when following an optimal hedging strategy. Since the wait-

and-see approach always yields a better outcome (or, strictly speaking, no worse

outcome) under any scenario compared with the here-and-now approach, the EVPI is

always nonnegative. The sufficient condition to ensure a zero-valued EVPI is for the

optimal stochastic solution to be independent of uncertain model parameters (Birge

and Louveaux, 2011).

16The EVPI is also called the “value of clairvoyance” in decision analysis parlance (Howard, 1968).
17In many applications, information is neither complete nor perfectly accurate, and it may be

impractical to assume that uncertainty can be completely eliminated. As a result, the expected
value of imperfect information is less than the EVPI.
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For the EVPI calculations, observations are assumed to be both pure and perfect

(Matheson and Matheson, 2005). Pure observations implicitly assume that the act

of gathering information and making observations leaves everything else in the influ-

ence diagram (i.e., generalized Bayesian network) unchanged. Reports from perfect

observations assign probabilities of one to the realized outcomes of target nodes.

The existence of the EVPI is predicated on the notion that there may be explicit or

implicit opportunity costs associated with delaying decisions. Decisions based on full

information generally perform better than ones with incomplete information ceteris

paribus. If a decision-maker can costlessly delay action until uncertainty is resolved,

then inaction will be a preferred strategy. The decision about the extent to which

resources should be committed now instead of in the future when information may

be available depends on a host of factors, including the riskiness and opportunity

costs associated with delay. If delay is risky, this strategy may not be sensible, which

gives rise to the EVPI due to differences between the wait-and-see and here-and-now

decisions during the first stage. Thus, the EVPI is a proxy for the opportunity cost

of delaying a decision until more information is available.18

This metric has significant consequences for decision-makers. In addition to pro-

viding a bound on potential benefits from prediction and forecasting,19 the EVPI

can be interpreted as the expected regret of the here-and-now strategy.20 Since it

is the probability-weighted sum of regret in all possible states, the EVPI can be

conceptualized as expected regret when regret is defined as the difference in pay-

offs between the here-and-now and wait-and-see (i.e., perfect information) strategies.

Thus, the optimal stochastic solution—in addition to minimizing the expected value

of the objective function—minimizes expected regret. This strategy is different from

the minimax-regret approach, which minimizes the maximum regret over all states.

When the EVPI for a specific uncertainty is nonzero, it indicates that no true “no

18Conrad (1980) demonstrates the equivalence of the value of information and the Arrow-Fisher-
Hanemann-Henry option value.

19This allows decision-makers to ascertain whether the costs of gathering information to tighten
distributions are justified by their potential benefits.

20Regret is the cost to the decision-maker for making a planning decision that is mismatched with
the realized state of the world.
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regrets” strategies exist across all decision variables for that uncertainty.21

Additionally, the EVPI captures the notion that, even though parameters may

contribute to variations in the objective function, these uncertainties may be irrel-

evant to decisions. This feature allows stochastic programming models to identify

policy-relevant parameters, which is one of the limitations to deterministic sensitivity

analyses and uncertainty propagation approaches.

The EVPI also has implications for modelers. In contexts where the EVPI for a

specific uncertainty is small but the VSS is large, it signals to analysts that resolving

uncertainty is not as important as accounting for uncertainty explicitly in model-

ing efforts through sequential decision-making frameworks. These cases occur when

suboptimal policies (e.g., those based on expectations of parameter values) lead to

significant losses. A second point is that the act of constructing more detailed and

elaborate models for uncertain quantities can lead to a greater understanding of the

complex system itself and to reductions in uncertainty. The EVPI can be adapted

as a sensitivity measure to estimate the maximum expected value of such forecast

modeling and to suggest which uncertain features are worth developing in greater

detail (Morgan and Henrion, 1990).

Despite the usefulness of this metric, there are a few important questions and

complicating factors involved in calculating the EVPI. First, synergistic effects among

contemporaneous uncertainties mean that the joint value of information may differ

from the sum of individual ones, which makes such effects important areas of ex-

ploration. Second, influence arrows on decision diagrams (i.e., ones from decisions

to uncertainties) make EVPI calculations slightly more difficult, as reports must be

conditioned on each (discrete) decision alternative to avoid loops on the influence di-

agram. Decision structures in which decisions influence uncertainties are common in

R&D management where, for instance, allocation decisions influence the probability

of successful program outcomes. Third, it is often challenging to identify a decision-

maker who would place a value on information or to pinpoint appropriate sources

information for all uncertainties. In some cases, uncertainty may be irreducible, even

21A zero-valued EVPI is a necessary but not sufficient condition for a “no regrets” strategy. The
strict definition is that zωws = zω∗ for all ω ∈ Ω.
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though the EVPI is relatively large. Additionally, although one hopes that gathering

more information about a problem will reduce uncertainty, research and exploration

often reveal unforeseen complexities and temporarily can increase uncertainty.22

Finally, since the EVPI depends on prior information about an uncertain param-

eter (in addition to the alternatives available to a decision-maker and the decision-

maker’s objective function), the EVPI can be extremely sensitive to tail probabili-

ties of prior distributions. If the well-established overconfidence effect narrows prior

distributions, the EVPI is likely biased downward, which may lead decision-makers

to substantially underestimate the utility of information gathering (Hammitt and

Shlyakhter, 1999).

Value of the Stochastic Solution

The VSS compares the expected costs of the expected-value and stochastic solutions

and describes the “value of knowing how little you know” (Morgan and Henrion,

1990).23 It quantifies the expected difference in cost for a decision based on stochastic

analysis and one that ignores uncertainty by opting to use a deterministic solution.

The VSS can guide analysts in the process of model construction by highlighting

which uncertainties are most important for inclusion and for more detailed probability

elicitations. The VSS is defined by the equation:

VSS ≡ zd − z∗

= Eωf(xd,ω)−min
x

Eωf(x,ω)

The explicit inclusion of uncertainty in planning efforts makes decision-makers at

least no worse off in expectation, assuming that the additional costs of analysis and

22For example, Morgan and Keith (1995) asked climate experts to assess the probability that
uncertainty about the value of the climate sensitivity parameter would grow by 25 percent or more
after a 15-year research program with a $1 billion research budget annually. The average value from
respondents was 19 percent. Chapter 7 discusses issues related to learning and uncertainty in the
context of climate policy.

23The value of the stochastic solution is also called the “expected value of including uncertainty”
(Morgan and Henrion, 1990). As discussed in greater depth in Section 3.3.2, the stochastic solution
also may be compared to other reference scenario values that use different best estimates (e.g., other
measures of central tendency like the median or mode) instead of the mean value.
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interpretation are reasonably negligible. Uncertain prior distributions for parameters

contain potentially useful information that otherwise would be lost if such values were

assumed to be certain. Thus, like the EVPI, the VSS is always nonnegative.

The value of using a stochastic solution comes from a variety of features in the

uncertain decision problem, including asymmetric loss functions, strongly asymmetric

probability distributions for uncertain quantities, and dependence between random

variables (Morgan and Henrion, 1990). The VSS is largest in contexts with asymmet-

rical payoffs for miscalculations and misforecasts. These situations with catastrophic

loss functions occur when harms increase proportionately with error on one side of

the optimal decision value but have a step-function-like error on the other side, which

leads to a substantial and abrupt losses for even small deviations. For instance,

the height of levees and seawalls exhibit highly asymmetrical payoffs during floods,

tsunamis, or other events. If water levels are below the design height, losses are rela-

tively small; however, if water overtops the crest of a levee or sea wall, damages are

much more extensive, particularly if overtopping leads to a complete breach.24

The VSS has numerous implications for decision-makers. Since stochastic pro-

grams are more difficult to formulate and solve than deterministic models, the VSS

can indicate whether approximations of optimal strategies (e.g., expected-value solu-

tions) are nearly optimal or extremely suboptimal. Hence, decision-makers can use

the VSS as a means to gauge the quality of an approximate solution and to quantify

the value of incorporating uncertainty explicitly instead of assuming a certain value

and then solving a deterministic decision problem.25

Additionally, the VSS can identify uncertainties that induce “anticipatory actions”

(Labriet, Loulou, and Kanudia, 2010) and merit explicit treatment through a sequen-

tial framework. Random events do not generate anticipatory actions if the VSS is

zero, which means that the hedging strategy is unresponsive to the uncertainty. A

high VSS indicates the need for precautionary hedging and explicit treatment using

24Morgan and Henrion (1990) speculate that the pervasive use of linear and quadratic loss functions
account for the widespread belief that explicitly incorporating uncertainty into decision support
models does offer significant improvements over deterministic frameworks.

25The VSS can be interpreted as the value of what Keats calls “Negative Capability,” which refers
to the ability to tolerate uncertainty without “irritable reaching” for certainty (Keats, 1899).
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a sequential approach, whereas other uncertainties can be treated in a simple sensi-

tivity analysis. Thus, the question of how to detect events that induce anticipatory

actions, as asked in Labriet, Loulou, and Kanudia (2010), is answered through the

VSS metric.

The VSS also has important consequences for modelers. It quantifies the added

value of using a stochastic, sequential decision-making model and guides analysts in

the process of model construction by identifying the most important uncertainties

for inclusion. Since the VSS quantifies the degree to which approximations of hedg-

ing strategies (e.g., expected-value solutions) are suboptimal, the use of this metric

is especially valuable for utility resource planning, since it is common to approxi-

mate stochastic models by solving different deterministic models based on a range of

parameter assumptions. Stochastic hedging strategies are then approximated in an

ad-hoc manner by finding common elements of decision strategies for many states of

the world (Jin et al., 2011). The VSS also can be used to prioritize efforts to quantify

various uncertainties by offering general guidance for tasks like allocating resources

across a range of modeling projects to assess distributions (e.g., building econometric

models), selecting the extent and exhaustiveness of elicitation efforts, or determining

computational tradeoffs when discretizing distributions.

This metric may be most relevant to modelers in contexts where it is difficult

or impossible to obtain accurate information about the future (Birge, 1995). In

these situations, adopting sequential decision-making can hedge against a range of

potential futures. Deterministic formulations, especially the common approach of

using linear programs, are prone to corner solutions (sometimes called “knife-edge”

or “bang-bang” solutions) that provide little robustness. Sequential decision-making

frameworks typically develop hedging solutions with a more diverse set of decision

variables and with a greater degree of slackness to forestall costly adjustment penalties

if realizations of uncertainties deviate from their expected values. This “practical

validation advantage” (Birge, 1995) of stochastic programming means that decision-

makers are more likely to view proposed strategies as being appropriately diversified,

which makes such solutions less likely to be modified or rejected. This intuitive appeal

is critical when the modeler and decision-maker are different people.
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Initially, it appears contradictory that the VSS can be used as a means of deter-

mining whether a stochastic modeling framework is appropriate, since calculating the

VSS seems to assume that a probabilistic model is already available. However, upper

bounds for VSS values can be approximated using a core deterministic model to cal-

culate whether a stochastic approach would be appropriate for a particular setting.26

Birge (1982) shows how the EVPI and VSS are bounded by zd − zws. The quanti-

ties needed to calculate this bound, the expected cost of the expected-value solution

(zd) and wait-and-see solution (zws), can be computed using standard deterministic

models, provided that the modeler can fix first-stage decisions when calculating zd

and that probability distributions are available for uncertain parameters. This bound

allows modelers to determine whether a specific application merits converting a de-

terministic model into one with a more sophisticated treatment of uncertainty. If

the upper bound is substantial, more investigation may be necessary; however, if the

bound is negligible, the expected-value strategy can be employed without a significant

loss of fidelity.

Even if a stochastic model is available, the VSS is still useful for model develop-

ment. The VSS for each uncertainty under consideration can be calculated individu-

ally to determine which random parameters have the largest VSS magnitudes, which

means that they should be included in more computationally complex joint uncer-

tainty model runs and should be given additional attention during the uncertainty

quantification and model refinement processes.

The EVPI and VSS are different metrics that compare the expected value of the

stochastic solution with another made without incorporating uncertainty. For the

VSS, the other decision is made when uncertainty is disregarded, even though it

still exists. For the EVPI, the other decision is made when uncertainty is removed

by obtaining perfect information. Thus, the VSS can be viewed as the additional

expected cost of pretending that uncertainty does not exist, whereas the EVPI is

the expected cost of being uncertain (Morgan and Henrion, 1990). Seen differently,

the VSS quantifies the value of incorporating uncertainty, and the EVPI “measures

the reward for resolving uncertainty” (Birge and Rosa, 1996). The VSS and EVPI

26The risk premium may also provide an upper bound on the VSS (Morgan and Henrion, 1990).
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metrics for an uncertainty can have very different magnitudes, as large values of one

metric do not guarantee high values for the another.27 Both metrics are expressed in

units of the objective function.

Value of Control

The VOC is a useful metric for measuring the value of being able to control the

outcome of an uncertain situation.28 In some contexts, uncertain parameters can

be considered decision variables if it is possible to exert some degree of control over

its outcome by committing resources. The VOC represents the change in value for

moving from an uncertain state (where the here-and-now approach is optimal) to a

desired state without uncertainty. Assuming perfect control, the VOC is determined

through the equation:

VOC ≡ min
x

Eωf(x,ω)−min
ω

�
min
x

f(x,ω)
�

(3.8)

The VOC is useful for uncertain parameters that are controllable (either wholly or in

part) through allocation decisions. These endogenous uncertainties manifest them-

selves, for instance, in the energy policy domain through technologies that have cost

and performance characteristics that can be influenced through directed R&D efforts.

For the VOC calculation in Equation 3.8, control interventions are assumed to

be both pure and perfect (Matheson and Matheson, 2005). Pure interventions only

change probability assessments of the target node and leave the remainder of the

influence diagram unchanged. Perfect interventions achieve its intended result com-

pletely, giving the decision-maker certain control over the outcome instead of merely

shifting the probability distribution.

27Birge (1982) demonstrates how these metrics are “distinct, different values that measure different
types of uncertainty” and proves that one metric can be zero while the other is nonzero.

28The VOC is known as the “value of wizardry” in decision analysis (Howard, 1971).
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3.4 Uncertainties Considered in Analysis

This analysis represents eight uncertain model parameters as random variables, in-

cluding the stringency of a federal climate policy, natural gas price path, coal price

path, upstream methane (CH4) emissions from shale gas, capital costs for nuclear

and coal with carbon capture and storage (CCS), public acceptance of CO2 storage,

and natural gas combined cycle efficiency. These chosen uncertainties come from a

variety of resources like informal interviews with experts in the utility industry and

academia, existing peer-reviewed research, and integrated resource plans (IRPs) for

utilities. This exploratory screening process identified the most important uncertain-

ties to consider for inclusion. The subset of these uncertainties that was ultimately

chosen for the final analysis was based on a series of sensitivity analyses, tornado

diagrams, and approximations of the metrics in Section 3.3.3. Uncertainty is charac-

terized for quantities in the model using approaches like statistical analyses, expert

elicitations, and econometric modeling.

This section describes the motivations for including these uncertainties and how

their finitely supported distributions are selected.

3.4.1 Climate Policy

Although global climate change is an urgent and significant problem, there are many

sources of uncertainty that will determine the stringency of policy measures used to

curb greenhouse emissions in the US and elsewhere (IPCC, 2007). The portfolio com-

position of generating assets for utilities over the coming decades will be influenced

critically by firms’ expectations about the timing, form, breadth, and stringency of

future climate policy. Climate policy is one of the most important uncertainties cur-

rently facing the power sector due to the industry’s heavy reliance on carbon-intensive

generation, which creates significant exposure to climate policy risk. Although there

are currently no federal regulations constraining greenhouse gas emissions, regulation

and/or legislation is expected in the near future, and its characteristics are highly un-

certain. Thus, it is appropriate and necessary for utilities and generators to consider

strategies that reduce the exposure of ratepayers and shareholders (in some cases) to
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the cost risks associated with future policies.

The future form of a climate policy is unknown. Legislation could come in the

form of a quantity instrument (e.g., quotas, commands, or targets) or price instrument

(e.g., tax). Additionally, the potential for qualitative and quantitative restrictions in

specific bills make it difficult to forecast the availability of diverse compliance mech-

anisms even if there were more certainty about the form of the legislative instrument

itself.29 If the legislative route stalls, regulation through the Environmental Protec-

tion Agency (EPA) is also possible after the US Supreme Court found that greenhouse

gases are covered by the Clean Air Act and, through the April 2007 Massachusetts

v. EPA decision, ruled that the EPA has the authority to regulate greenhouse gas

emissions as pollutants.

It is important to note that these carbon taxes are fundamentally different from

the social cost of carbon, as a variety of barriers may prevent the socially optimal

policy from matching the one that is actually implemented. Distortions may arise

due to many factors outside of the scope of this research, which can mean that the

imposed tax does not reflect the actual benefits or costs of mitigation. Firms are

indifferent toward the magnitude of external damages apart from the degree to which

such externalities are internalized through policy.30 Lobbying efforts by energy firms

are one source of distortions, as some regulated entities may have financial incentives

to push for more lenient legislation or for exemptions. For instance, lobbyists for fossil-

fuel-related industries spent $500 million in 2009 and 2010 to defeat the Waxman-

Markey bill, outspending proponents of the bill by a ten-to-one margin (Wagner and

Zeckhauser, 2012).

The model does not consider other regulations like water, particulate matter,

ozone, ash, or regional haze. The only greenhouse gases incorporated in the model

are CO2 and CH4. It is assumed that the climate policy will include both of these

greenhouse gases.

This analysis assumes that the policy will take the form of a price on equivalent

29Bills like Waxman-Markey (H.R. 2454) allow utilities to meet compliance obligations in part
through certified offset credits.

30This framework does not model strategic interactions between firms and regulators, which is
investigated by Tarui and Polasky (2005).
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greenhouse gas emissions, which is uncertain until the second stage. After this period,

the CO2 price is assumed to escalate in real terms at a constant annual rate until the

end of the horizon. Data to parameterize the distribution for this uncertainty come

from a representative sample of 14 Western utility IRPs, which make assumptions

about the trajectory of carbon taxes over multidecadal planning periods.31 All 14

utilities in this sample assume in their planning that the climate policy will come in

the form of a tax.32 If the model here is to reflect the beliefs of the decision-makers,

it must use the metric that utilities incorporate into their own analyses.

Figure 3.2 plots the assumed CO2 price trajectories over the planning horizons

of the 14 Western utilities considered in this analysis. The reference trajectories are

shown as solid lines, and the dashed lines represent other scenarios that are considered

by utilities. These values are standardized into units of 2010$ per metric ton of CO2e

to facilitate comparison and integration into the capacity planning model.33 The

highly variable durations over which these trajectories span is indicative both of the

range of publication years for utility IRPs and of the differences in planning horizons.34

CO2 prices and their escalation rates over time vary among utilities.

31The utilities selected for this analysis include: Avista, Idaho Power, Los Angeles Department
of Water and Power (LADWP), NorthWestern, NV Energy, Pacific Gas and Electric (PG&E),
PacifiCorp, Portland General Electric (PGE), Public Service Company of Colorado (PSCo), Puget
Sound Electric (PSE), San Diego Gas and Electric (SDG&E), Seattle City Light, Southern California
Edison (SCE), and Tri-State Generation and Transmission.

32Regulatory requirements for utilities like Idaho Power dictate that their IRP analysis of potential
climate policies be performed as a carbon adder or tax.

33Short tons were assumed when IRPs did not explicitly specify the units.
34Planning horizons range from 10 years (PG&E, PacifiCorp, SDG&E, SCE) to 40 years (PSCo)

with a mean of about 19.
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Figure 3.2: CO2 price trajectory assumptions for 14 Western utilities in units of 2010$
per metric ton (Mt-CO2e). The solid lines represent expected cases, and the dashed
lines show alternate policy scenarios.

To illustrate the ranges of values considered in individual IRPs, Figure 3.3 presents

the above data for the year 2025 only, which is the base model period when uncertainty

is assumed to resolve. The reference or best-estimate cases are shown along with the

ranges for the lowest and highest values considered by utilities. First, note that the

reference case does not always correspond to the expected value of the carbon tax

distribution, no matter how probabilities are assigned.35 Second, many utilities view

a no-policy scenario to be a serious possibility. 8 of the 14 utilities (57 percent)

consider a no-policy scenario throughout the time horizon, and one utility (PSCo)

uses the zero-valued tax as its reference value. Finally, comparing these ranges to

estimates of the 2025 stringency of the Waxman-Markey bill illustrates that utilities’

35Only two utilities (Avista and NorthWestern) attach probabilities to the price scenarios.
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expect that an implemented climate policy will have a much lower price on carbon.

According to the Energy Information Administration (EIA) analysis of H.R. 2454

(DOE/EIA, 2009), the reference case (“ACESA Basic Case”) indicates a 2025 price

of about $47/Mt-CO2e. Only 5 of 14 utilities (36 percent) include this value in their

potential range.36

The degree to which uncertainty analysis is incorporated into integrated resource

planning varies across utilities. Only 2 of the 14 utilities (14 percent) attach proba-

bilities to the uncertain climate policy scenarios. Ignoring probabilistic information

precludes many of the uncertainty analysis and risk management approaches described

in Chapter 2, including the ability to develop hedging strategies through sequential

decision-making. This limitation is reflected in the common use of sensitivity analysis

(79 percent), integrated risk metrics (43 percent), and threshold analysis (36 percent);

however, no utility in the sample uses a sequential decision-making framework or un-

certainty evaluation metrics.37 Additionally, transparency about the treatment of risk

is lacking in the resource plans, as only one utility explicitly defines how tradeoffs are

made between expected cost and risk.38

36This finding is consistent with empirical evidence from cap-and-trade programs for sulfur dioxide
and nitrogen oxide where, prior to the start of the programs, analysts overestimated the compliance
costs of the proposed regulations (Taylor, 2012).

37Wilkerson, Larsen, and Barbose (2013) provide a detailed discussion of the types of risks consid-
ered by Western utilities in their long-term resource plans. They find that the risks most commonly
included are future demand, fuel prices, and regulatory compliance for future climate policies.

38Barbose et al. (2008) reach similar conclusions about the treatment of carbon-price risk in
utility resource planning and conclude that it is unclear if (or how) uncertainty about climate policy
influences the selection of utilities’ preferred portfolios.
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Figure 3.3: Carbon dioxide tax assumptions (2010$/Mt-CO2e) in 2025 by utility.

The CO2 price trajectory data are used to create a distribution over potential

2025 prices in the model. Each scenario from each utility is treated as an indepen-

dent draw from this distribution, and a five-point probability mass function is used

to represent this discrete random variable, which preserves the sample mean and

variance. The resulting probability density and cumulative distribution functions are

shown in Figure 3.4, which has a mean of approximately $30/Mt-CO2e.39

39This research is agnostic about the methods used to arrive at the scenarios and distributions for
carbon tax assumptions by utilities. These values must be taken as given, since there is no normative
model for deriving such distributions, which differs from other uncertainties in the analysis.
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Figure 3.4: Discretized probability density and cumulative distribution functions for
the second-stage CO2e price (2010$/Mt-CO2e).

3.4.2 Natural Gas and Coal Prices

Prices for energy resources are uncertain and fluctuate based on many complex fac-

tors. Uncertainty about the future of natural gas is also driven by recent discoveries

and increased domestic production of shale gas (Moniz, Jacoby, and Meggs, 2010).

Although abundant gas resources suggest expanded use in the electricity sector, uncer-

tainty about long-run production costs and the environmental impacts of production

make the extent of this growth unclear (Huntington, 2013; IEA, 2012a; DOE/EIA,

2011a; Coleman et al., 2011). Additionally, natural gas price uncertainty will be

influenced by the unknown policy environment, public acceptance of hydraulic frac-

turing (Kriesky et al., 2013; Brown et al., 2013; Brasier et al., 2011), and uncertainty

surrounding life-cycle emissions for shale gas (Howarth, Santoro, and Ingraffea, 2011;

Jiang et al., 2011).

A vector autoregressive (VAR) model was created to estimate the probability

distributions for future natural gas and coal prices of electric power generators. Us-

ing historical data for delivered fuel prices from the 2011 Annual Energy Review
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(DOE/EIA, 2011b) published by the EIA and forecast data from the 2012 Annual

Energy Outlook (DOE/EIA, 2012), this work uses a two-step process to estimate the

trend and variability for future fuel prices and then uses this VAR model to create

density functions for annual price growth rates for natural gas and coal. This model

is based on the techniques developed by Zdybel and Baker (2013). Moment matching

was used to discretize the resulting distribution into three-point discrete probabil-

ity distributions for natural gas and coal. Appendix A discusses the VAR model

specification in greater detail.

EMF 26 
Range 

1995 2000 2005 2010 2015 2020
0

5

10

15

N
at

ur
al

 G
as

 P
ric

e 
(2

01
0$

/M
M

Bt
u)

 

 
Historical
VAR Model
EIA

Student Version of MATLAB

Figure 3.5: Historical and forecast delivered prices of natural gas for the electric power
sector. The VAR model results show the 10th, 50th, and 90th percentile values. The
EIA cases represent the high-shale, reference, and low-shale scenarios. The EMF 26
cases represent the highest and lowest reported values in 2020 along with the reference
scenario (averaged over all models).

Figure 3.5 shows the uncertainty ranges for delivered natural gas prices for the

VAR model results and the 2012 Annual Energy Outlook (DOE/EIA, 2012). The
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trend for gas prices closely mirrors the EIA forecast, as the VAR model suggests

that prices will increase only slightly over the next couple decades. However, the

model results suggest that the uncertain range of prices may be much wider than the

EIA projections, both on the lower and higher ends of the distribution. The VAR

projections by 2020 are more consistent with the computational experiments from

Stanford’s Energy Modeling Forum (EMF) 26 study (Huntington, 2013), as shown in

the bar at the right-hand side of the figure.

Modelers do not often quantify distributions over critical outputs or attach prob-

abilities to possible scenarios, and there is evidence that, when analysts do quantify

uncertainty, they tend to underestimate the range and probabilities associated with

non-expected-value outcomes (Shlyakhtera et al., 1994). Although the EIA scenar-

ios do not have associated probabilities, these results seem to support this finding

and suggest that the overconfidence effect (i.e., the cognitive bias where confidence

intervals are assessed too narrowly) also exists at an institutional level.

Based on this analysis, the annual natural gas price growth rate can take values of

-5, 0, or 7 percent with probabilities of 0.30, 0.34, and 0.36, respectively. Coal price

growth rates can have possible realizations of -2, 0, or 2 percent with corresponding

probabilities of 0.28, 0.51, and 0.21, respectively.

3.4.3 Methane Emissions from Shale Gas Production

In addition to future prices, one of the most contentious and uncertain issues in-

volving unconventional natural gas centers on the greenhouse gas impacts from its

development. Research on life-cycle emissions from shale gas production has only been

undertaken in the past two years, which focuses primarily on upstream CH4 emis-

sions. These studies exhibit a high degree of variation due to divergent assumptions

and considerable uncertainty in the underlying data (Burnham et al., 2012; Cath-

les, Brown, and Taam, 2012; Howarth, Santoro, and Ingraffea, 2012; EPA, 2011a;

Howarth, Santoro, and Ingraffea, 2011; Hultman et al., 2011; Jiang et al., 2011;

DOE/NETL, 2011).40 These problems are compounded by empirical data scarcities

40Across the life-cycle stages for natural gas systems, estimates of CH4 emissions exhibit the
greatest variation in production-related emissions due to assumptions regarding the frequency of
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and the heterogeneity of sites and drilling practices. The lack of recent, direct emis-

sions measurements combined with the tens of thousands of geographically diverse

wells across the US will likely make this debate an active one in future years.

Figure 3.6 illustrates the disagreement and uncertainty in estimates of fugitive CH4

emissions from shale gas across existing studies. This uncertainty is incorporated in

the model as a random variable for emissions from shale gas production.41 This work

uses these values in a discrete three-point distribution with outcomes of 0.11, 0.6,

and 1.18 grams of carbon per megajoule of fuel, which are interpreted as the 10th,

50th, and 90th percentiles. Using the Extended Swanson-Megill approximation and

assigning probabilities of 0.3, 0.4, and 0.3, respectively, to these outcomes provides a

fairly robust approximation for a wide range of distributions (Keefer, 1994).42

On one hand, the uncertainty of prospective CH4 leakage is more endogenous

than other uncertainties, since producers can implement control technologies to reduce

leakage rates. On the other hand, the upstream emissions rate is more uncertain than

other random parameters considered in the analysis, since it is extraordinarily difficult

to resolve unknown levels of past CH4 emissions due to a lack of reliable measurements.

Previous CH4 emissions can be considered sunk from the firm’s standpoint and do not

impact future decisions. However, this uncertainty is much more problematic from a

societal perspective due both to direct risks associated with climate damages and to

indications about future monitoring credibility.

hydraulic fracturing to stimulate wells and of liquids unloading (Bradbury et al., 2013). The ex-
ceptions are the high emissions estimates from flowback and transmission in Howarth, Santoro, and
Ingraffea (2012), which is one of the only estimates that does not rely primarily on EPA data.

41Upstream CO2 and CH4 emissions are included for coal and conventional natural gas production
in the model as well.

42A recent study (Pétron et al., 2012) is one of the first to use actual air samples to characterize
CH4 emissions from shale gas systems. Using daily samples from the NOAA Boulder Atmospheric
Observatory in Colorado, the multi-species analysis estimates that gas production in the Denver-
Julesburg Basin leaks CH4 at a rate that is twice as high as the Howarth, Santoro, and Ingraffea
(2012) estimates for wellhead completion and production. The analysis does not quantify CH4

emissions from other stages like leaks during distribution. Levi (2012) questions these findings, and
Pétron et al. (2013) defend their initial results. A more recent evaluation (Karion et al., 2013) using
aircraft overflight measurements for a gas field in Uintah County, Utah indicates an even higher
CH4 leakage rate, though the basin’s emission rate may be atypical of surrounding regions. Results
from an on-the-ground study (Allen et al., 2013) of onshore sites in the US are consistent with
EPA estimates for production-related emissions, though potential selection effects may distort the
representativeness of these results.
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Although leaks represent only a few percent of the lifetime production of a well,

CH4 is the dominant portion of natural gas and a potent greenhouse gas, which means

that even small leaks of this short-lived climate forcer can be significant. Recent

modeling efforts (Shindell et al., 2009) have suggested that CH4 may have an even

larger global warming potential than previous estimates suggested (IPCC, 2007),

particularly when indirect effects on atmospheric aerosols are taken into account.

This analysis uses estimates of the global warming potential from Shindell et al.

(2009) and a 100-year timescale to analyze the impact of CH4.
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Figure 3.6: Estimates of fugitive methane emissions from shale gas production from
the literature.

3.4.4 Capital Costs

There are many technological, economic, and geopolitical uncertainties that may im-

pact CCS availability. These uncertainties include the effectiveness of CO2 capture,

possibilities of retrofitting plants and employing partial (or flexible) capture, unknown

timeline for availability at scale, economics of building and operating CCS facilities,

and presence of a politically viable policy framework for storing CO2 (IPCC, 2005).

This nascent technology is especially uncertain, as there are currently only eight CCS
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facilities worldwide and eight large-scale integrated projects were cancelled or post-

poned in 2012 (Global CCS Institute, 2012).

Similarly, nuclear power poses financial risks due to uncertainties in capital costs,

regulatory requirements, electricity demand, and public opposition. Although these

risks have been known for decades (OTA, 1984), the 2011 Fukushima Daiichi accident

refocused attention on the perceived risks surrounding nuclear power. There is now

uncertainty on how this post-Fukushima questioning of nuclear policies will impact

the development and deployment of new reactors and retirement of existing capacity.

Additionally, capital costs for new nuclear facilities historically have been higher

than estimated, which complicates prospective forecasts. More than 75 percent of US

nuclear reactors cost at least twice as much as initially estimated (DOE/EIA, 1986),

and the French scale-up of reactors was characterized by negative learning, whereby

construction costs increased with cumulative capacity installations (Grübler, 2010).43

Technological uncertainties for coal with carbon capture and nuclear are incorpo-

rated in the model as distributions over investment costs for these technologies. These

distributions come from expert elicitations conducted at the Harvard Kennedy School

(Anadon et al., 2011). Elicitation data are given as 10th, 50th, and 90th percentiles

for experts in each technological area under base (business-as-usual) and enhanced

R&D conditions.44 The experts’ elicited values are combined using Monte Carlo sim-

ulations weighting experts evenly. As with the original Harvard research (Anadon

et al., 2011), the percentiles are fit to shifted log-logistic distributions. The resulting

cumulative distribution functions are shown in Figure 3.7.

43Relative to other types of power plants, nuclear reactors are significantly more complex in their
designs and operating conditions, which increases the potential for novel and unanticipated errors.
For instance, a 1969 inspection revealed that abnormally high levels of radioactivity in the plant’s
drinking fountains were caused by a 3,000-gallon radioactive waste tank being improperly connected
to the drinking water system. The Atomic Energy Commission’s description understatedly reported,
“The coupling of a contaminated system with a potable water system is considered poor practice in
general” (AEC, 1969).

44The enhanced R&D distributions are used in the R&D strategy work in Chapter 6.
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Figure 3.7: Cumulative distribution functions for overnight capital costs.

For coal with CCS, using moment matching to create three-point discretizations

yields potential outcomes of $2k, 4k, and 6k (2010$/kW) with probabilities 0.39, 0.44,

and 0.17, respectively. For Generation III/III+ nuclear reactors, the random variable

can take the value of $2k, 4k, and 7k (2010$/kW) with probabilities 0.28, 0.55, and

0.17, respectively.

3.4.5 Public Acceptance of CO2 Storage

Although the technological, regulatory, and economic barriers to CCS development

are considerable, public acceptance of CCS technologies and large-scale storage may

be an equally daunting challenge.45 Given questions about whether captured CO2 will

remain isolated from the atmosphere for long periods, it is not surprising that public

concerns about CCS center on its environmental integrity (Einsiedel et al., 2013).46

45Despite greater public concern for climate change in recent years, only five percent of a 2007
surveyed sample had heard of CCS or carbon sequestration, and even these respondents had difficul-
ties identifying which environmental problem CCS technologies address (Curry, Ansolabehere, and
Herzog, 2007). This concern is especially pressing in the US relative to other countries like Sweden
and Japan, where CCS awareness is closer to 15 and 22 percent, respectively (Reiner et al., 2006).

46Survey results in the US indicate that perception of CCS ranges from negative (Reiner et al.,
2006; Palmgren et al., 2004) to slightly positive (Fleishman, Bruine de Bruin, and Morgan, 2010;
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Public opposition has already been a factor in cancellations of proposed CO2 storage

projects (Van Noorden, 2010).

Putative risks like those surrounding large-scale CO2 storage can enter into the

decision-making process either directly (i.e., where outcomes have direct financial

impact on decision-makers) or indirectly (i.e., where risk perception guides actions

of involved stakeholders, and these actions have indirect financial impacts through

channels like legislation or regulation). Thus, uncertainties like the public acceptance

of CO2 storage may be considered in the decision-maker’s analysis based on perceived

risk regardless of actual risk, unless these two can be bridged through the intervention

of researchers, journalists, and decision-makers before such risks acquire culturally

divisive meanings (Kahan et al., 2012).47

The public acceptance uncertainty for large-scale CO2 storage uses probability es-

timates from a National Academies study (National Research Council, 2007), which

accounted for public opposition based on risks from sequestration and siting require-

ments. According to this study, the probability of normal storage is 0.66, which

implies a 0.34 probability that storage is prohibited.48

3.4.6 Natural Gas Combined Cycle Efficiency

In addition to uncertainties about the economic and environmental impacts of un-

conventional natural gas, another relevant uncertainty that will shape the future role

of natural gas in the electric power sector is the performance of gas-turbine-based

de Best-Waldhober, Daamen, and Faaij, 2009). Acceptance of CCS ranked lower than nuclear power
in some pre-Fukushima surveys of public acceptance (Reiner et al., 2006). Support for CCS has been
shown to increase when information on costs and environmental benefits of CCS are provided in some
studies (de Best-Waldhober, Daamen, and Faaij, 2009; Reiner et al., 2006), but other surveys have
indicated declining support when information is given (Palmgren et al., 2004).

47Research suggests that acceptance and support for CCS may be influenced by beliefs about
climate changes (Einsiedel et al., 2013). This link may make it challenging for educational campaigns
to avoid attaching antagonistic cultural meanings to CCS, since it is difficult to convey information
about CCS and its benefits without mentioning the technology’s link to climate change.

48Public opposition likely will not manifest itself in a binary, all-or-nothing outcome for utilities
across the country. A more realistic modeling approach would have more possible manifestations of
these restrictions, especially since regulations and risk assessments are likely to come at a state level
(similar to hydraulic fracturing). The current framing also could be conceptualized as the long-term
technological success of integrated carbon capture projects.
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technologies. In particular, the first-law efficiencies of these technologies with and

without carbon capture may determine the diffusion of new capacity and market

share of generation from natural gas. Such characteristics are especially important

for a technology subject to fuel price volatility and to similar levelized electricity costs

as other technological substitutes, which means that even small efficiency changes may

have large impacts on future diffusion and utilization.

I conduct a series of elicitations with experts in industry and academia to in-

vestigate the best practices of energy technology probability assessments through a

case study of a policy-relevant technology that has been hitherto neglected in the

elicitation literature. In particular, the aim of this work is to represent the current

state of knowledge regarding the future of gas turbine systems for new central station

electricity generation. Most elicitations for fossil-based electricity generation tech-

nologies focus on coal with CCS, and when research groups look at gas with CCS, it

is typically to encode uncertainty about capital costs. Here, I elicit expert judgments

on the first-law efficiencies of commercially viable natural-gas-fired power plants.

In the absence of this elicitation approach, most energy-economic models sim-

ply assume that future plant efficiencies will remain constant at current levels (with

combined cycle efficiencies between 50 and 60 percent) or will marginally increase

between now and 2050. Even slight deviations from these efficiency values can have

large impacts over time in the development and deployment of gas-turbine-based sys-

tems, particularly when natural gas prices and climate policy are uncertain and there

are many substitute technologies and fuels (as discussed in Chapter 4.2).

Figure 3.8 shows the cumulative distribution function of elicited values for first-

law efficiencies in 2025 under the business-as-usual R&D scenario. Individual values

for all four experts are given along with the combined and fitted cumulative distribu-

tion function. Although the figure shows some disagreement, particularly for higher

efficiencies, it is notable that all experts agree that the median efficiency value for

2025 will be at least 60 percent. According to the analysis in Appendix B, only

one existing energy-economic model has an efficiency value that exceeds 60 percent
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through 2050.49 Thus, existing models significantly underestimate performance char-

acteristics for future natural gas systems for electricity generation.
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Figure 3.8: Elicited values for first-law efficiencies (lower heating value basis) of new
gas-turbine-based electricity generators in 2025.

Using the Extended Swanson-Megill approximation, the three-point discretization

of this random variable can take the value of 56, 63, and 72 percent with probabilities

0.3, 0.4, and 0.3, respectively.

A more in-depth discussion of the elicitation protocol and results is found in

Appendix B.

49The Siemens SGT5-8000H gas turbine achieved a world record 60.75 percent efficiency in a
combined-cycle configuration at the Irsching Power Station in Bavaria, Germany in May 2011.
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3.4.7 Model Representation of Uncertainties

Table 3.2: Uncertainties included in the capacity planning model.

Uncertainty Scenarios
CO2 tax stringency 5
Natural gas price path 3
Coal price path 3
Upstream CH4 emissions 3
Coal with CCS capital costs 3
Nuclear capital costs 3
Public acceptance of CO2 storage 2
Natural gas combined cycle efficiency 3
Total 7,290

Each of these random parameters is assumed to be statistically independent (i.e.,

probabilistically irrelevant).50 This assumption means that there are a total of 7,290

universe scenarios, as shown in Table 3.2.

The model uses a two-stage stochastic programming approach and is programmed

in the General Algebraic Modeling Software (GAMS) environment using the DECIS

system (Infanger, 1999). All uncertainties are assumed to resolve completely in 2025.

From this model period forward, second-stage decisions can be made with complete

and perfect knowledge of all future parameters.

50The specifications of random variables are made so that these uncertainties are orthogonal as
much as possible, acknowledging that characterizing marginal distributions for uncertain parameters
is difficult enough let alone the complete joint distribution. For instance, a capital cost inflation
metric over time is used in Chapter 4.2.3 to model correlated construction costs for different plant
types. Although the uncertainties have been defined and selected in a manner to reduce the potential
for correlation, future research efforts should attempt to more rigorously quantify potential impacts
of correlations between random variables. For example, natural gas prices and CH4 leakage rates
may be negatively correlated if low prices provide strong incentives to reduce costs by eliminating
control technologies and other practices that could have reduced emissions during well production
and completion.
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Chapter 4

Capacity Planning Results

4.1 Reference Results

Table 4.1 lists objective function values for the wait-and-see (zws), stochastic (z∗), and

expected-value (zd) solutions.1 The top rows list values when the uncertainties are

considered individually, and the bottom row shows results for all eight uncertainties

considered jointly.

The joint expected value of perfect information (EVPI) of $162 billion is consid-

erably larger than the value of the stochastic solution (VSS) of $36 billion,2 which

indicates that resolving uncertainty is more valuable than simply accounting for it in

modeling efforts and implementing a hedging strategy.3 Additionally, the joint EVPI

and VSS come primarily from three uncertainties: climate policy, natural gas prices,

and public acceptance of large-scale carbon dioxide (CO2) storage. The highest values

correspond to the natural gas price uncertainty, which underscores the significance of

this factor in utilities’ capacity-planning decisions.

1The numerical results in this section should be interpreted in the context of the accompanying
model assumptions from Chapter 3. Greater emphasis should be placed on the insights gleaned from
this framework rather than on the exact magnitudes of the model outputs.

2All monetary values are expressed in US 2010 dollars with a discount rate of five percent unless
otherwise noted.

3The result that the value of information acquisition exceeds the value of precautionary invest-
ments mirrors the conclusions of Manne and Richels (1993).

88
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Table 4.1: Comparison of discounted system costs (billion $) for the wait-and-see
(zws), stochastic (z∗), and expected-value (zd) solutions when uncertainties are consid-
ered individually and jointly. The EVPI and VSS metrics are shown in the rightmost
columns, respectively.

Uncertainty zws z∗ zd EVPI VSS
Stringency of abatement policy 4,114 4,171 4,185 57 15
Natural gas prices 4,096 4,168 4,204 72 36
Coal prices 4,278 4,279 4,279 2 0
Upstream CH4 emissions 4,283 4,283 4,283 0 0
Capital costs (coal with CCS) 4,283 4,283 4,283 0 0
Capital costs (nuclear) 4,283 4,283 4,283 0 0
Public acceptance of CO2 storage 4,283 4,290 4,291 7 1
Natural gas combined cycle efficiency 4,283 4,283 4,283 0 0
Joint 3,884 4,047 4,083 162 36

4.1.1 Value of the Stochastic Solution

To account for the relatively low VSS, it is instructive to compare first-stage deci-

sion variables between the stochastic and expected-value solutions. Table 4.2 lists

capacity investments by generator type before the uncertainties are resolved in 2025.4

The similarity between the stochastic and expected-value strategies accounts for the

small VSS. Capital investments are concentrated primarily in new wind and nuclear

assets, which are common to both approaches. This result suggests that these tech-

nologies are strong candidates for near-term hedges against a variety of uncertainties

while allowing the power sector to keep pace with growing demand and retirements of

significant portions of the current generator fleet in the coming decades. These tech-

nologies are attractive investments due to their low life-cycle greenhouse gas emissions

(which reduces exposure to the climate policy uncertainty) and to their low fuel price

volatility (relative to alternatives like natural gas), which means that they are eco-

nomical under a wide range of contingencies and are not as likely to be mothballed

or decommissioned once new information becomes available.
4Values in the table represent planned capacity but not necessarily completed additions by 2025.

Construction lead times in the model mean that nuclear units will not come online until two periods
(i.e., ten years) after the investment decision is made (and one period for CCS-equipped capacity).
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Table 4.2: Cumulative capacity investments (GW) by 2025 under the stochastic and
expected-value solutions.

Stochastic Expected Value
Biomass 3 3
Coal with CCS 0 61
Natural gas combined cycle 0 0
Nuclear 289 287
Wind 139 139
Total 431 490

The most striking difference between these strategies is the 61 GW investment in

new capture-equipped coal generators under the expected-value strategy.5 In part, the

stochastic strategy avoids near-term carbon capture and storage (CCS) investments

due to the possibility that these assets would be mothballed or decommissioned either

if the climate policy is too stringent or too lax or if public opposition prevents cost-

effective CO2 storage. The stochastic strategy delays investment in new capacity and

instead relies on increased generation from existing, underutilized (i.e., low capacity

factor) natural gas units.

Apart from this stranded-cost effect, CCS investments under the stochastic ap-

proach are lower as a means to avoid irrevocably committing resources to capital as-

sets that not only may be suboptimal for the realized state of the world but also may

displace investments in more profitable generating capacity in later periods. Second-

stage capital expenditures, made after more information about uncertain quantities

is available to utilities, may profitably adjust deployment levels of technologies to

take advantage of unforeseen and unlikely boons like unexpectedly low natural gas

prices. In this instance, the stochastic strategy avoids irreversible investments early

on, which may entail sizable opportunity costs from foreclosed opportunities, by not

investing in CCS-equipped coal units and by instead meeting growing demand with

increased utilization of existing natural gas units.6 In contrast, the mean value of

5In addition to overestimating the amount of coal with CCS relative to the stochastic strategy,
the expected-value solution also slightly underestimates the optimal amount of nuclear, since the
stochastic solution is providing a greater hedge in the event that a moderate climate policy is realized
but large-scale CCS is not available.

6Investments are considered irreversible when expenditures are sunk costs and it is impossible
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the carbon tax distribution of $30/Mt-CO2 lies in the permissible policy range where

coal with CCS is lucrative, which means that the expected-value approach deploys

this technology during the first stage.

This insight about the small but important bifurcation between the stochastic

and expected-value approaches is particularly interesting given the typical behavior

of similar decision problems under uncertainty. Hedging policies, like the stochastic

approach here, often diversify investments across a range of technological options

to protect against failure (Birge and Rosa, 1996). In this instance, utilities choose

to delay investments with the hope of learning more information instead of making

additional precautionary investments. The option to postpone decisions gives utilities

the ability to tailor capacity investments to the realized scenario, which makes this

freedom to wait valuable if the opportunity costs of delay are relatively low (Dixit and

Pindyck, 1994). The threat of stranded assets from irreversible investments results in

delaying capital outlays. In general, the VSS is higher for uncertainties that induce

anticipatory, near-term actions.7

The profitability of delaying a fraction of investment under uncertainty is an

effective strategy for utilities in the United States (US) context for three reasons.

First, as mentioned already, the stochastic strategy can increase generation from

underutilized natural gas combined cycle (NGCC) capacity in the interim before

uncertainty is revealed. Second, exogenous retirements due to plants exceeding their

operating lifetimes will not occur en masse for a couple of decades. By that time, more

information will likely be available about long-term policy trajectories, fuel prices,

and technological cost and performance characteristics. Finally, slower projections of

electricity demand growth in the coming years will obviate the need for new capital

investments right away.

A considerable amount of variance for the cost advantage of the stochastic strategy

under different states of the world can be accounted for by two of the most important

to uninvest, which occurs when economic conditions decline and investments are industry-specific
(Tuthill, 2008).

7Delays also could result from risk aversion, which is not incorporated in this analysis; however,
as noted by Arrow and Fischer (1974), “Something of the ‘feel’ of risk aversion is produced by a
restriction on reversibility.”
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uncertainties, as illustrated by Figure 4.1. The decision not to build CCS capacity

before uncertainties are resolved proves to be most valuable under scenarios with

low natural gas prices and lenient climate policies. In these scenarios, the first-best

option under uncertainty is to build large quantities of NGCC units during the second

stage once information has been revealed about modest carbon and low gas prices.

However, for the expected-value approach, irreversible investments in coal with CCS

during the first stage would provide less flexibility for taking advantage of these

market opportunities.

Realized Carbon Tax in 2025 ($/Mt-CO2) 

Figure 4.1: Cost advantage of the stochastic solution with different realized values
of the climate policy uncertainty (horizontal axis) and natural gas price uncertainty
(colors). Each circle represents one scenario of the 7,290 possible outcomes.

One reason why explicitly accounting for uncertainty leads to prescriptions of de-

creased near-term investments in low-carbon technologies relates to abatement cost



www.manaraa.com

CHAPTER 4. CAPACITY PLANNING RESULTS 93

characteristics of the power sector. Total system costs (i.e., the objective function

in the utilities’ intertemporal optimization problem) are concave in carbon taxes,

with costs essentially plateauing around $20/Mt-CO2. This general trait is consis-

tent with a wide range of studies in the literature that find that a carbon tax of

$14–27/Mt-CO2 would largely decarbonize new electricity generation (Weyant, de la

Chesnaye, and Blanford, 2006), which means that more stringent carbon taxes would

not substantially impact costs toward the second half of the modeling horizon.

Consequently, if utilities plan for the mean carbon tax ($30/Mt-CO2) in the first

stage and the most stringent case is later realized, higher carbon taxes would not sub-

stantially impact second-stage costs. Thus, the only method of achieving cost savings

for the climate policy uncertainty is for utilities to avoid irreversible investments early

on and hope that the low-tax scenario is realized so that second-stage investments

are less costly. If one were to graph a loss function as in Figure 4.2 (with expected

system costs on the vertical axis given the assumed carbon tax on the horizontal

axis), the function would be minimized for a carbon tax between $15–20/Mt-CO2,

which corresponds to the optimal stochastic strategy. The function increases steeply

around a zero carbon tax, indicating that, although it is more beneficial to err on the

lower side of the mean, it is costly to undershoot the optimal value by too much.8

8The importance of the actual distribution to this insight illustrates how empirically-derived
distributions are required to resolve ambiguity about optimal energy decisions in uncertain environ-
ments (Baker and Solak, 2013). It shows the value of incorporating actual data instead of stylized,
ad-hoc distributions.
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Figure 4.2: Loss function of expected system costs (vertical axis) for different first-
stage planning assumptions about future CO2e taxes (horizontal axis).

The conclusion that it is suboptimal for the stochastic solution to construct coal

with CCS capacity during the first stage is a robust one. I tested the robustness

of this recommendation to the number and types of uncertainties included in the

analysis and found that, even when only the climate policy and gas price uncertainties

are considered, the result still holds. When only the climate policy uncertainty is

considered, there is a small amount of CCS-equipped coal generation built (12 GW),

but it is a much smaller investment than the expected-value solution (61 GW).

In another experiment, I assume that utilities and generators plan based on a

“best-guess” assumption of no substantial climate policy instead of using the mean

value for the second-stage carbon tax. This no-policy scenario can be interpreted in

several ways: 1. Expectation of stalled international negotiations and/or disagree-

ment at the federal level; 2. Anticipation of a discovery that climate change is not

as threatening as expected; 3. Expectation of a low-risk geoengineering solution or

cheap ambient air capture to decouple emissions from climate impacts. As mentioned

in Chapter 3, utilities may view climate policy as an endogenous uncertainty with

(partially) controllable outcomes, particularly if climate risk is noisy and high evi-

dentiary standards for control can delay action. Even if a carbon tax materializes,
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this scenario could represent the case where utilities and generators believe that there

is a high likelihood that carbon-intensive units built before policy is enacted will be

grandfathered into legislation (i.e., creating a self-fulfilling prophecy danger).9

If the VSS is computed assuming a no-policy baseline, the VSS increases to $61

billion, which is much higher than the $36 billion using the expected-value solution.

This VSS can be interpreted as the expected cost of inaction. In contrast to the

baseline case, the no-policy solution builds no nuclear capacity (instead of 287 GW)

and instead constructs 107 GW of coal-fired units. These units would represent large

financial losses if emissions restrictions are later put in place or if natural gas prices

are exceedingly low, which would lead to a large-scale decommissioning of these units.

These scenarios would cause these units to be decommissioned almost immediately,

which gives rise to a larger VSS.

This experiment illustrates the importance of model assumptions about a decision-

maker’s expectations, why cancellations of planned coal additions observed around

2007 initially occurred (i.e., due to expectations that a carbon price would materialize

in the near future), and why few coal additions have been proposed since (i.e., due to

expectations that natural gas prices will remain low). This expected-value solution

only performs well under a distribution that is compatible with the assumed no-policy

prior, but the strategy is vulnerable when it encounters a world with a dramatically

different distribution.

4.1.2 Expected Value of Perfect Information

Much like the VSS, the EVPI of $162 billion is driven primarily by information for

scenarios with less stringent carbon taxes and lower natural gas prices, as shown in

Figure 4.3. Information has value in lax climate policy scenarios, since it would be

optimal to build fewer low-carbon units like wind and nuclear during the first stage

and instead wait to build fossil-based capacity, especially if natural gas prices are low.

9The utilities’ climate policy distribution ultimately hinges on epistemological and psychological
questions related to belief formation and mental models of risk, which are beyond the scope of this
research. Additionally, the utilities’ optimization problem may be more complex than suggested by
this formulation, as values may be excluded from the objective function or some parameters may be
considered decision variables instead of given values.
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The utility of having access to early information comes through the ability to avoid

irreversible, capital-intensive investments in technologies that are suboptimal for the

realized scenario.

Realized Carbon Tax in 2025 ($/Mt-CO2) 

Figure 4.3: Value of information with different realized values of the climate policy
uncertainty (horizontal axis) and natural gas price uncertainty (colors).

4.1.3 Shale Gas

Many of the most pressing energy policy questions in the US are related to uncon-

ventional natural gas resources like shale gas. The model runs in this section contain

many insights about the potential role of shale gas as part of the domestic energy

mix. Figure 4.4 suggests that shale gas resources are used for electricity generation

largely when natural gas prices are low (with abatement targets being a secondary

driver). Shale gas and natural gas in general are less important for ambitious climate
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targets no matter what price is assumed and regardless of upstream emissions. The

dark green area in Figure 4.4 illustrates that only small amounts of shale gas are used

when the natural gas price growth rate is at its mean value or higher.
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Figure 4.4: Percentage of total generation from shale gas after 2010.

Reference results for capacity investments in Table 4.2 indicate that there is no

deployment of new natural gas capacity under the stochastic or expected-value strate-

gies before uncertainty is reduced. In the next decade, lower natural gas prices are

likely to spark greater utilization of existing capacity rather than new construction.

The greatest potential for new capital investments will occur later in the future once

more information is available and once a stronger long-term price signal can lower

investment uncertainty.

Another related question is whether a carbon price will increase or decrease natural

gas consumption in the power sector (Huntington, 2013). Figure 4.4 illustrates how

the answer to this question varies depending on the realized gas price. When natural
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gas prices are low, the no-policy case relies primarily on gas generation, which means

that natural gas consumption is monotonically decreasing in the carbon tax. However,

when natural gas prices are close to the mean value of the distribution, the no-

policy case involves generation with substantial amounts of both coal and natural

gas. Therefore, when average gas prices obtain, increasing the carbon tax leads to

more generation from gas-fired capacity up to a point and then begins to decrease.10

This effect illustrates the importance of modeling the interactions between multiple

uncertainties simultaneously, particularly for complex policy questions.

There is also widespread interest in determining how shale gas availability will

influence investments in renewable technologies. Speculation centers on questions

about the degree to which a low-cost shale boom may curtail the deployment of low-

carbon substitutes like wind and nuclear. The ternary plot in Figure 4.5 illustrates

that many more considerations than simply natural gas prices will influence how gas

could displace investments in other electric sector technologies.11

The expansion of generation from natural gas units is largest under scenarios where

gas prices are low and the stringency of climate policy is low to moderate. Under a

scenario where no climate policy is enacted, generation comes primarily from fossil-

based units, with gas comprising nearly 85 percent of generation by 2050 when gas

prices are low. The availability of low-cost shale gas lowers greenhouse gas emissions

by replacing production from coal, even though no climate policy is in place in this

state of the world. When a moderate policy is enacted and abundant reserves lower

gas prices, coal is eliminated from the generation mix by 2050, and 50 percent of

electricity comes from natural gas.12 For this specific case, the existence of low-cost

shale gas means that gas units replace what would have otherwise been predominately

coal with CCS (which would generate 21 percent of generation by 2050), nuclear, and

10For mean-valued gas prices, note that increasing the carbon tax means more natural gas gener-
ation on a relative basis (i.e., compared with the no-policy case). On an absolute basis, generation
is still not as large as when natural gas is cheapest.

11Ternary plots use barycentric coordinate systems to depict proportions of three variables as
locations on an equilateral triangle. The proportions of these three components sum to a constant
value (typically 100 percent, as in Figure 4.5).

12Since natural gas is still a hydrocarbon-based fuel, approximately a third of the natural gas
generation comes from CCS-equipped units in order to comply with the moderate climate policy.
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wind. Under a stringent climate policy scenario, however, the presence of shale gas in

the resource supply curve for natural gas has very little influence on the deployment

of technologies in the power sector. The model generates a significant fraction of

electricity from non-emitting resources like renewables and nuclear by 2025 regardless

of the gas price. Thus, the influence of shale gas on electric sector investments depends

strongly on the stringency of the climate policy in addition to natural gas prices.
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Figure 4.5: Ternary plot of electricity generation share (%) by technology under
various gas price and climate policy scenarios, 2010–2050. The gridlines indicate the
fraction of total generation in a given year from renewables and nuclear (horizontal
gridlines), natural gas (diagonal gridlines from the lower left to upper right), and coal
(diagonal gridlines from the upper left to lower right). High gas price scenarios are
depicted in black and low price scenarios in green with 2010–2020 values shown in
red. Note that, since the stochastic hedging approach is used, the strategies are the
same for all scenarios before the uncertainty resolution date of 2025.
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Another research question with significant policy dimensions is how much utilities

and generators would be willing to pay for research, development, and deployment of

control technologies to limit fugitive methane (CH4) emissions from shale gas. This

value of control places an upper bound on the deployment of control technologies and

can be calculated by taking the difference between the expected cost of the stochastic

strategy (with all 7,290 scenarios) and the expected cost of the problem where CH4

leakage is certain to be zero.
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Figure 4.6: Percentage increase in generation from shale gas (on an absolute basis)
when upstream methane emissions are zero instead of being uncertain.

The value of control is $40.5 billion, which indicates that there is considerable

benefit to limiting upstream emissions. Limiting CH4 leakage allows more gas units

to be built and operate during the second stage in scenarios where higher carbon taxes

are realized and natural gas prices are low to moderate, as shown in Figure 4.6.13

13The benefits of a CH4 control technology would be even greater if a correlation exists between
low gas prices and high leakage rates, which is not incorporated in the model.
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The ability to limit upstream CH4 emissions would be most beneficial in the pa-

rameter space where the carbon tax is about $40/Mt-CO2 and gas prices are relatively

constant over time. Under such conditions, generation that would have come from

coal with CCS (when upstream emissions are uncertain) instead would be replaced

by natural gas with CCS. The magnitude of this substitution effect is shown in Fig-

ure 4.7 and results in an 8.6 percent increase in generation from shale gas, which

takes advantage of the lower natural gas prices. Thus, limiting upstream emissions

represents a large value-added proposition for utilities and shale gas developers, since

it can allow greater deployment of gas units under climate policy and gas resource

scenarios when they otherwise would not have been cost-competitive.
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(a) Uncertain upstream emissions
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Figure 4.7: Annual electricity generation (billion kWh) by technology under scenarios
with $40/Mt-CO2 tax, flat natural gas prices, and mean upstream methane emissions
(for the left figure only).

This effect is slightly different from the value of control calculated in previous

work (Bistline, 2012), which investigates the utility of upstream CH4 controls in a

policy environment with uncertain cumulative emissions caps.14 In this situation, the

reason that control is so valuable is that, for tight abatement scenarios, this strategy

allows existing natural gas plants to generate more during the first stage. It relies

14Although cumulative caps may make sense from scientific standpoint, difficulties in implement-
ing such a policy suggest that the actual form of regulation will balance many relevant factors in
mechanism design and political feasibility.
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on extra capacity from less frequently used units, which currently have low capacity

factors and are used primarily as peaking plants, instead of building new ones to keep

pace with growing demand. This control scenario has the flexibility of waiting to

observe the resolution of uncertainties before building new capacity. It would turn

the overbuilding of NGCC units from the mid-1990s onward from a liability into a

significant asset for reducing system operating costs, CO2 emissions (until a more

certain policy framework is in place), and conventional air pollutants. This strategy

would simultaneously maintain grid reliability without additional capital investments.

In summary, although these system flexibility benefits of capturing CH4 are not

seen within the framework of utilities’ decision problem (i.e., where the policy mech-

anism for internalizing greenhouse gas externalities is a tax), they illustrate how

CH4-reduction or capture technologies are valuable to a variety of stakeholders under

a range of policy settings.15 Reducing upstream CH4 leakage is valuable under uncer-

tain cumulative emissions constraints due to first-stage flexibility impacts, but under

the carbon taxes used here, it is most valuable due to second-stage cost reductions.

4.1.4 Value of Control

The value of control (VOC) is a useful metric for measuring the value of being able

to control the outcome of an uncertain situation. It represents the change in value

moving from an uncertain state to a desired state without uncertainty. Assuming per-

fect control, the VOC is determined by comparing the expected cost of the stochastic

strategy with all uncertainties and that of the stochastic strategy where the con-

trolled uncertainty assumes a fixed value that minimizes expected cost. The VOC

is useful for uncertain parameters that are controllable (either wholly or in part)

through allocation decisions. These endogenous uncertainties manifest themselves in

the energy-policy domain through technologies that have cost and performance char-

acteristics that can be influenced through directed research and development (R&D)

efforts. In this context, the VOC can be interpreted as a proxy for an upper bound

on R&D spending.

15The importance of CH4 reductions in an optimal hedging strategy is demonstrated in Labriet,
Loulou, and Kanudia (2010), where CH4 capture at landfills is a robust abatement measure.
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Table 4.3: Value of control (billion $) comparison for selected uncertainties as a
fraction of the objective function value (OFV).

Uncertainty Units Mean Control VOC % of OFV
Capital costs (nuclear) $/GW 3,980 2,000 297 7.3%
Capital costs (coal with CCS) $/GW 3,900 2,000 52 1.3%
Capital costs (solar) $/GW 7,800 2,890 39 1.0%
Capital costs (gas with CCS) $/GW 2,080 1,000 22 0.5%
NGCC efficiency % (LHV) 63% 72% 13 0.3%
Acceptance of CO2 storage Unitless >1 1 4 0.1%

Table 4.3 shows the VOC for uncertainties considered in the model. That the

nuclear capital cost uncertainty has the highest VOC is not surprising given that it is

the most commonly deployed technology during the first stage for both the stochastic

and expected-value solutions.

Although likely not as controllable as the other random variables in the model,

the climate policy and natural gas price uncertainties have even larger VOCs at $794

and $508 billion, respectively. These large values reinforce the importance of these

uncertainties for decision-makers and modelers and the high willingness to pay of

utilities if these parameters were controllable.

These values beg questions about about optimal R&D portfolio investments in-

stead of upper bounds for R&D for specific technologies. Such questions are addressed

with the R&D strategy research in Chapter 6.

4.2 Sensitivity Analyses

The previous section centers on reference model results, which reflect many assump-

tion about the utilities’ and generators’ capacity planning and dispatch decisions:

probability distributions for uncertainties are based on the best-available informa-

tion; construction costs remain stable over the time horizon; all uncertainties resolve

in 2025. To test the robustness of these experimental findings, I conduct sensitivity

analyses with respect to important modeling and policy-relevant factors:

1. Using outdated probability distributions
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2. Varying the discount rate used in utilities’ intertemporal optimization problem

3. Treating construction escalation costs as a separate uncertainty

4. Modifying the availability and technological readiness of nuclear and CCS

5. Varying the resolution date of uncertainties

6. Considering different assumptions for demand growth

4.2.1 Outdated Distributions

The previous sections assume that utilities’ probability distributions are based on the

most up-to-date understandings and estimates of a range of uncertainties. However,

the decision-maker’s beliefs may depart from the best-available information for a

variety of reasons. Overwhelmed by the number of interrelated factors that must be

taken into consideration, utilities may adopt more lax tools for dealing with risks and

may instead use fewer uncertainties in the planning process. Resource limitations

may lead decision-makers to use heuristic approaches for quantifying distributions,

which may entail using values from analyses without sufficiently updated information.

Additionally, even if utilities recognize uncertainties and devote substantial resources

toward quantifying them, cognitive heuristics and biases can distort probabilities from

their “true” distributions, which may impede their ability to accurately quantify and

prioritize risk.

In this section, I investigate the impact of using outdated distributions if utilities’

beliefs about fuel prices are based on the best-available information from 2007 but

the actual, realized distributions are based on the most up-to-date distributions. In

other words, first-stage decisions are made based on 2007 expectations for future coal

and natural gas prices, but the realizations of random variables in the second stage

come from the unexpected distributions discussed earlier, which allows this strategy

to be compared with the performance of the optimal stochastic strategy developed in

Section 4.1.

All values in this section come from the Energy Information Administration’s

2007 Annual Energy Outlook (DOE/EIA, 2007). At that time, energy analysts were
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bullish on coal and only beginning to understand the long-term impacts of shale gas

and how this resource would alter expectations about the domestic energy landscape.

According to a National Energy Technology Laboratory report (DOE/NETL, 2007),

the resurgence of coal dominated the outlook for the electric power sector, as 145 GW

of new coal capacity additions were planned by 2030.16 According to the 2007 Annual

Energy Outlook, the reference (mean) price of coal in 2030 is $1.87 per MMBtu (in

2010 dollars) with an implicit annual growth rate of -0.9 percent, which is more

optimistic than the current mean value of $2 (0 percent). In contrast, the 2007

Annual Energy Outlook reference natural gas price for 2030 is $7.07 per MMBtu

with a growth rate of 1.7 percent, which is higher and more pessimistic than the

current mean value of $6.10 (1 percent).
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(a) Reference 2013 distributions
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Figure 4.8: Comparison of annual electricity generation (billion kWh) by technology
in the no-policy scenario under perfect foresight.

Figure 4.8 shows how this simultaneous optimism about coal and pessimism about

natural gas can impact the electricity generation mix in the no-policy scenario. Even

these minor differences between expectations of fuel price spreads lead to dramatically

different trajectories of capacity additions, generation, and emissions by the end of

the time horizon. Under the reference distributions, much of the retired coal capacity

(and increasing demand) is replaced by highly efficient NGCC units so that 63 percent

16Most of these proposed projects were later cancelled.
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of generation by 2050 comes from natural gas. With expectations from 2007, new

capacity investments come almost exclusively from supercritical pulverized-coal units

so that 64 percent of generation comes from coal by 2050.

Table 4.4: Discounted system costs and VSS (billion $) comparison under alternate
assumptions about probability distributions and the climate policy.

Distributions Climate Policy z∗ zd VSS
Reference Mean value 4,047 4,083 36
Reference None 4,047 4,108 61
2007 Mean value 4,047 4,127 80
2007 None 4,047 4,289 243

Explicitly incorporating uncertainty in the planning process is especially valuable

given outdated 2007 expectations, as shown in Table 4.4. Due to its bullish forecast

about coal, the expected-value solution builds more coal with CCS in the first stage

with 2007 priors (110 GW) compared with the most up-to-date values (61 GW). As

in Section 4.1.1, the VSS comes from avoiding investments in CCS to take advantage

of cheap natural gas if available and to avoid stranding these assets in the event that

the carbon tax is prohibitively high or low.

This effect is more pronounced when utilities make first-stage decisions assuming

that no climate policy will materialize. Under this assumption, utilities would deploy

255 GW of coal capacity without capture equipment instead of nuclear. The costliness

of these non-salvagable assets under a range of climate policy scenarios is reflected in

the VSS value of $243 billion using the 2007 distributions.

These experiments indicate an important facet of the existence value of shale gas

that is neglected by many analysts—namely, its ability to change expectations about

fuel price spreads for the future. As illustrated in Table 4.4, the increased VSS under

outdated distributions vis-à-vis the reference scenario suggests that shifting expec-

tations between 2007 and the present (i.e., due to new information about shale gas)

may have helped to avert costly expenditures that are suboptimal from an expected-

value perspective. These VSS values show that, although the explicit incorporation

of uncertainty in capacity planning is still important, stochastic planning is not as
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important now as it was in the early 2000s under a coal-centric investment paradigm.

If decision-makers are wrong about their forecasts for future values, the impacts of

model error are less severe now than they were 5–10 years ago.
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Figure 4.9: Cumulative distribution functions over discounted system costs (trillion
$) under the stochastic and expected-value solutions. The solid lines represent the
reference distributions, and the dashed lines signify cases where 2007 distributions
are assumed when first-stage decisions are made.

Figure 4.9 illustrates the riskiness of adopting stochastic and expected-value strate-

gies under alternate assumptions about probability distributions. Plotting the cumu-

lative distribution functions (CDFs) of the stochastic (black line) and expected-value

(blue) strategies serves as an approximate visualization of the VSS, which is the

integral between the CDFs of these two approaches.

The stochastic solution not only protects against downside losses but also opens

up the possibility of upside gains from volatility. For instance, when natural gas prices

are lower than expected, delaying first-stage investments allows the stochastic solution
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to build more gas-fired capacity, which can take advantage of favorable market con-

ditions. The antifragility (Taleb, 2012) of the stochastic approach provides a strong

hedge against uncertainty, reduces risk, and presents simultaneous opportunities to

adapt to evolving market conditions. Thus, the stochastic strategy attenuates the

adverse effects of downside risk while retaining the option value associated with de-

ferring irreversible commitments until more information is available about potentially

lucrative opportunities.17

Comparing the stochastic solution with the expected-value solution assuming no

climate policy shows the risk premium of the stochastic approach. If the realized

values of the carbon and natural gas price uncertainties are low, the stochastic solution

will incur investment and operating costs that exceed the expected-value solution by

$0.5 trillion. However, the stochastic solution decreases risk dramatically relative to

the expected-value strategies that plan under the assumption of no climate policy or

outdated distributions.

4.2.2 Discount Rate

This section considers an experiment in which decision-makers’ discount rates are var-

ied from the reference rate of five percent. Table 4.5 corroborates inverse relationships

between the discount rate and the EVPI and VSS metrics. The VSS increases more

appreciably between five and three percent compared with seven and five percent.

The large VSS at a discount rate of three percent is driven by increased investments

in coal with CCS under the expected-value strategy, which builds 120 GW in the first

stage (compared with 61 GW in the reference case). For lower discount rates, future

cash flows have larger impacts on the objective function value and hence on near-

term investments, which lowers the incentive to delay investments. Additionally, the

VSS and EVPI are larger for smaller discount rates due to objection function value

inflation at lower discount rates, as the cost base to which the metrics apply increases

with lower rates.
17The optionality of capital investments is discussed in Chapter 5.3.
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Table 4.5: Discounted system costs (billion $) and comparison of EVPI/VSS metrics
for the discount rate sensitivities.

Discount Rate zws z∗ zd EVPI VSS
3 percent 5,264 5,466 5,576 203 110
5 percent 3,884 4,047 4,083 162 36
7 percent 2,990 3,097 3,114 107 17

4.2.3 Construction Cost Escalation

Raw materials and commodity costs can influence the diffusion of technologies in the

electric power sector. Like any input cost uncertainty, construction inputs fluctuate

stochastically in time, as policy conditions and the economic environment may be

changing simultaneously. IHS CERA Power Capital Cost Index (PCCI) values, which

measure project cost inflation for a range of power plants across North America,

indicate that construction costs have increased by 124 percent between 2000 and

2012 (IHS CERA, 2013).

Treating construction escalation costs as a separate uncertainty from capital cost

uncertainties for individual technologies is useful for a few theoretical and practical

reasons. Like stock prices, different types of power plants (i.e., capital assets) have

a system cost component and an individual cost component. The construction cost

escalation uncertainty incorporates commodity cost volatility like rising steel and

copper costs. From a practical perspective, characterizing cost uncertainty through

separate individual and systematic components avoids the problem of assessing cor-

relations between cost-related random variables of different plant types by explicitly

modeling the cause of the dependence. This separation aids the expert elicitation

process in particular, since the elicitation literature suggests that experts are not

good at assessing correlational structures (Morgan and Henrion, 1990).

In this experiment, a construction cost index applied to all power plants is varied

in two cases:

• Low construction costs: Capital costs of power plants decrease linearly from

their current levels to reach their 2000 values by 2050.
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• High construction costs: Capital costs increase linearly through 2050, where

they double current levels.

For both the low and high construction cost cases, the VSS increases from $36 bil-

lion to $67 billion and $122 billion, respectively. The stochastic strategy in each case

has a tendency to delay investment more than the expected-value solution. When

construction costs are expected to decline over time, the stochastic strategy can better

take advantage of lower capital costs in future years after information about critical

uncertainties has been revealed. When construction cost escalations are anticipated,

both the stochastic and expected-value solutions significantly decrease first-stage in-

vestment. The higher VSS under this case comes from the higher stakes associated

with stranded capacity, since down-the-line investments in the second stage are more

costly under the higher cost escalation paradigm.

A separate experiment investigates how expectations of higher construction costs

interact with a postponed resolution date of 2030. The VSS increases to $231 billion in

this case. Delay is most detrimental when the opportunity costs of postponing invest-

ments are high. Here, uncertainty generally makes decision-makers want to postpone

irrevocably committing resources until future values of random variables are known,

but escalating construction costs make utilities want to invest sooner. Delaying the

resolution date gives more potential for misaligning investments with true state of the

world, and costs are much higher when making investments in replacement capacity,

which gives rise to a larger VSS. When uncertainty is not resolved until 2030, the

stochastic strategy invests in coal capacity during the first stage. Since the delayed

resolution requires some new investments to satisfy rising demand before uncertainty

is resolved, the stochastic strategy takes advantage of lower costs in the near-term by

constructing cheap capacity with little fuel-cost risk and benefits handsomely under

lax climate policy scenarios.

This sensitivity gives a partial response to questions about why utilities would still

build coal plants given expectations for unconventional natural gas to depress prices

in future years and for future climate policies. Section 4.1.1 also illustrates a case

where expectations that no climate policy is on the horizon would build coal units.

This section suggests another (less obvious) reason why utilities may find it optimal
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to build coal plant in the coming years—namely, they may believe that a price on

carbon will not materialize in the next couple decades (and perhaps not during the

lifetime of the investment) and simultaneously that construction costs will increase.

4.2.4 Limited Technological Availability

The results in Section 4.1 suggest an important role for nuclear technologies to hedge

against uncertain climate policies, technological capabilities, and economic conditions.

However, many analysts have voiced skepticism regarding the future of nuclear power,

suggested that it faces a “crossroads, with possibilities of the start of a renaissance

or a slow decline” (NEA, 2012) due to currently low deployment of reactors and

to expectations of future cost increases for Generation III/III+ reactors (Anadon

et al., 2012).18 Given these concerns, I consider an experiment in which new nuclear

construction is infeasible. The VSS for this sensitivity increases to $51 billion largely

due to the expected-value strategy doubling down on coal with CCS builds (with 108

GW of capacity installations in the first stage), since nuclear units are not available

as hedging technologies. The stochastic strategy builds additional wind and relies on

increased utilization of existing capacity, which means that this hedging strategy is

most valuable when the realized natural gas and carbon prices are low.

A parallel sensitivity analysis considering limited CCS availability suggests that

the value of CCS readiness in the second stage is $13.8 billion. This result illustrates

that, although they are not ideally suited for short-term deployment, CCS technolo-

gies are an important part of the long-term generation mix.

As discussed in Section 4.1, the reference results demonstrate that utilities have

little near-term incentive to build CCS-equipped capacity given uncertainty about

climate policy. If learning effects are important for reducing costs to enhance CCS

readiness in future decades when greater abatement may be needed, CCS deployment

may require near-term public-private partnerships for early pilot and demonstration

projects as well as for R&D for capture systems with lower parasitic losses. Rubin

et al. (2007) show how historical experience curves for similar technologies like flue-gas

18Over the past decade, approximately four reactors per year went online globally (IAEA, 2013).
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desulfurization and selective catalytic reduction systems for power plants exhibited

cost increases during the initial stages of commercialization. These increases are

primarily due to reliability and performance deficiencies in early designs, which are

typically not incorporated in long-run learning rates. Thus, capital cost increases for

early CCS units (i.e., before cumulative experience with commercial capacity drives

down costs) would be consistent with these observations and would be important

factors in cost trajectories for CCS.

4.2.5 Uncertainty Resolution Date

In another experiment, the uncertainty resolution period is moved forward and back-

ward from the 2025 reference case to understand the impact of the learning period

on the optimal stochastic solution. Due to the structure of the climate policy un-

certainty as a tax, advancing the date of uncertainty resolution does not necessarily

reduce expected costs, unlike other studies like Labriet, Loulou, and Kanudia (2010).

Table 4.6 shows that changing the resolution date has a small but appreciable

difference on the results. The small magnitudes of the changes are due both to

the fact that first-stage emissions are not penalized after uncertainty is resolved and

to the fact that exogenous retirements do not begin in earnest until about 2030.

The VSS increases to $57 billion when the resolution date is pushed to 2030 due to

increased investments in coal with CCS (almost 130 GW) under the expected-value

strategy. The stochastic strategy delays making new investments as long as possible

to obtain information. However, growing demand outstrips existing capacity by 2035

and requires additional investments. Under the 2035 resolution case, the stochastic

strategy finally builds coal with CCS, which brings the hedging strategy closer to the

expected-value solution and consequently lowering the VSS. Consequently, the VSS

is non-monotonic in the resolution date.19

19Additionally, the EVPI increases when uncertainty is resolved earlier, which mirrors the conclu-
sions of previous research efforts (Parson and Karwat, 2011).
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Table 4.6: Discounted system costs (billion $) and comparison of EVPI/VSS metrics
for uncertainty the resolution date sensitivities.

Resolution Date zws z∗ zd EVPI VSS
2020 4,100 4,265 4,301 166 36
2025 3,884 4,047 4,083 162 36
2030 3,778 3,926 3,983 148 57
2035 3,697 3,831 3,857 133 27

4.2.6 Demand

In addition to its seasonal, weekly, and diurnal patterns, electricity demand has a long-

term trend of growth. Although the worldwide electricity growth forecast through

2030 is about two percent annually, US growth has slowed from nine percent in 1950s

to less than 2.5 percent in 1990s. Between 2000 and 2007, the average US growth

dropped to 1.1 percent (Jin et al., 2011).

To test the robustness of the model results to assumptions for demand growth,

a sensitivity case uses 2007 projections for demand growth from the Annual Energy

Outlook (DOE/EIA, 2007). The forecast of 44 percent growth in total by 2030 is

considerably more bullish than the 20 percent increase projected in the 2012 Annual

Energy Outlook. Under the high-demand case, the VSS has a small but appreciable

increase to $48 billion, and the EVPI increases to $200 billion. Similar increases are

also observed when inelastic demand is used with the reference growth case. In each

sensitivity, more capacity must be constructed during the first stage to keep pace

with growing demand. Increasing demand or decreasing the price responsiveness of

demand force utilities to shift irreversible investments earlier in the time horizon,

which provides reduced flexibility before more information becomes available and

increases the probability that non-salvagable resources will eventually be stranded.

4.2.7 Comparison of Sensitivity Results

The EVPI and VSS results presented in this chapter are summarized in Figure 4.10.

The VSS is largest under conditions where the decision-maker does not sufficiently
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account for the potential for climate constraints in future decades, especially when

distributions for fuel prices are outdated and bullish toward coal. Larger values also

occur when smaller discount rates (e.g., three percent instead of five percent) are used

and when increasing commodity prices put upward pressure on future construction

costs. The EVPI is larger when discount rates are low, when demand is higher than

projected, and when consumers are less responsive to electricity price changes under

policy scenarios (i.e., when demand is inelastic).
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Figure 4.10: Comparison of EVPI and VSS results for the electric sector capacity
planning experiments.

Another general conclusion from these results is that uncertainty, particularly

in climate policy and technological availability, tends to postpone investments in

new generating capacity until more information is made available or uncertainty is

resolved. In the reference results, the stochastic strategy builds less capacity during

the first stage (431 GW) compared to the expected-value strategy (490 GW), as

shown in Figure 4.11. Such reduced first-stage commitments are more pronounced

under conditions where the PCCI is high (“High PCCI”), where commodities prices

decrease (“Low PCCI”), and where policy constrains investments in new nuclear
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capacity (“No New Nuclear”).
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Figure 4.11: Comparison of cumulative capacity additions (GW) by 2025 between
the stochastic and expected-value strategies.

4.3 Summary of Findings

This chapter investigates the dynamics of capacity planning and dispatch in the US

electric power sector under a range of technological, economic, and policy-related

uncertainties. The objective is to determine the sensitivity of near-term decisions to

long-term uncertainties by developing stochastic strategies, which account for possible

costs of midcourse corrections and hedge against a variety of upside and downside

risks. The results suggest important insights about near-term decision-making under

uncertainty and the modeling efforts that attempt to inform them.

Using a two-stage stochastic programming approach, model results suggest that

the two most critical risks in the near-term planning process are natural gas prices

and the stringency of climate policy. Stochastic strategies indicate some near-term

hedging from lower-cost wind and nuclear will occur but robustly demonstrate that

delaying investment and waiting for more information can be optimal under certain

conditions to avoid stranding capital-intensive assets. In particular, the stochastic
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approach will avoid near-term CCS investments due to the possibility that these assets

would be decommissioned either if the climate policy too stringent or too lax or if

public opposition prevents cost-effective CO2 storage. The stochastic strategy instead

delays investment in new capacity and relies on increased generation from existing,

underutilized (i.e., low capacity factor) natural gas units. One interpretation of the

results is that utilities should first pursue quasi-reversible alternatives that provide

flexibility and avoid capital-intensive, long-lived investments. Chapter 5 explains

these dampening effects of uncertainty in terms of the optionality of investments,

leading to more general insights about uncertainty, learning, and irreversibility in the

electric power sector.

It is important to note that the model results should not be interpreted as an

argument for a do-nothing near-term strategy. As Manne (1996) emphasizes, “Delay

should not be confused with inaction.” The value of delaying investment to wait for

more information applies only to coal with CCS capacity for the stochastic approach

vis-à-vis the expected-value approach. In fact, both approaches indicate that sub-

stantial near-term investments in wind and nuclear are optimal under a robust range

of future scenarios. Additionally, the assumption that information will be received in

2025 hinges in part on the existence of sustained R&D efforts in the interim, which

is investigated in more detail in Chapter 6.

The largest losses occur when decision-makers’ beliefs depart from the best-available

information either by using outdated distributions for fuel prices or by adopting opti-

mistic beliefs about the ability to postpone a comprehensive climate policy.20 These

results of misestimation underscore the importance of using actual distributions that

incorporate actual data instead of stylized, ad-hoc distributions. The VSS comes

from the tendency to delay or postpone investments in new generating capacity until

more information is made available or uncertainty is resolved. Such hedging policies

not only protect against downside losses but also open up the possibility of upside

gains from volatility (e.g., when natural gas prices are lower than expected). The

stochastic solution is especially valuable if decision-makers do not sufficiently account

20These results are especially relevant given the limitations of existing approaches for uncertainty
analysis in utility resource planning, as described in Chapter 3.4.
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for the potential of climate constraints in future decades, if fuel price projections are

outdated, if discount rates are low, or if construction costs are expected to increase

over time.

As Chapter 5 discusses in greater detail, these results suggest that a sequential

approach to climate policy (e.g., by implementing a new source performance stan-

dard in the near future) could incentivize preemptive and supererogatory abatement

efforts until more comprehensive climate legislation is in place. These policies may

be effective instruments to reduce cost risks for utilities, to safeguard against the

erosion of public confidence in political institutions, to demonstrate the feasibility of

emissions reductions by beginning with relatively low-cost restrictions, and to lower

the probabilities of environmental hazards for society at large.21

The model results offer many policy-relevant insights about the future role of un-

conventional natural gas in the US electric power sector.22 The value of control for

upstream emissions from shale gas is shown to be substantial. Limiting CH4 leakage

allows more natural gas units to be built and operate during the second stage in

scenarios where higher carbon taxes are realized and natural gas prices are low to

moderate, which means that the development and deployment of these control tech-

nologies represent a large value-added proposition for utilities and shale gas develop-

ers.23 Additionally, questions about whether a carbon price will increase or decrease

natural gas consumption and whether shale gas availability will influence investments

in renewable technologies are shown to hinge on interactions between uncertainties

related to natural gas prices and climate policy. The shale gas boom will not impede

long-term investments in low-carbon technologies if a sufficiently stringent climate

21In US domestic efforts to reduce depletion of the ozone layer leading up to the Montreal Protocol,
the initial and persistent focus on banning aerosol applications of chlorofluorocarbons helped to signal
commitment toward further remediation efforts. Much like coal applications in the power sector,
aerosols represented a substantial source of emissions but had readily available substitutes, which
presented a “strong tactical and substantive rationale” for beginning restrictions with this source
(Parson, 2003).

22These insights are broadly consistent with the results of Huntington (2013) regarding the impact
of shale gas on the US electric power sector and on greenhouse gas emissions.

23Recent estimates suggest that many strategies for lowering life-cycle CH4 emissions from natural
gas production (e.g., plunger lift systems for liquids unloading, low-bleed pneumatic devices, leak
monitoring and repair) are relatively cost-effective with payback periods of less than three years
(Bradbury et al., 2013; EPA, 2011b).
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policy is enacted in the coming decades. However, if policy-makers fail to provide

suitable incentives for firms to internalize climate-related externalities, utilities may

overinvest in gas-related infrastructure and underinvest in low-carbon technologies

relative to their socially optimal levels.24 Such effects illustrate the importance of

modeling the interactions between multiple uncertainties simultaneously, particularly

for complex policy questions.

24In addition to adopting a climate policy with appropriate levels of timing, stringency, and
credibility, establishing proper incentives requires that non-CO2 gases be included and also that the
global-warming potentials for these gases accurately reflect the latest peer-reviewed research. The
2009 Waxman-Markey bill (United States House of Representatives. 111th Congress. 1st Session,
2009) uses a GWP of 25 for CH4, which reflects the 100-year timescale value used in the IPCC’s
Fourth Assessment Report from 2007. The EPA’s greenhouse gas emissions inventory (EPA, 2011b)
uses a lower value of 21. Chapter 3.4 discusses how these values are smaller than the mean value of
33 from Shindell et al. (2009). The IPCC’s Fifth Assessment Report (IPCC, 2013) recommends a
value of 34 for the 100-year timescale when feedbacks are taken into account.
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Chapter 5

Discussion of Capacity Planning

Results

5.1 Uncertainty, Learning, and Irreversibility

The results in Chapter 4 confirm the importance of stock irreversibilities and learning

on near-term hedging decisions. If decision-makers eventually learn that climate

policies are less severe than initially anticipated ex ante, then they will regret costly

expenditures on unnecessary control equipment ex post and instead will wish that

such irreversible investments were delayed. However, if policies are more stringent

than expected, decision-makers may regret not taking a more precautionary approach

in early periods, as there may be substantial costs associated with delay or with

carbon-intensive investments that are suboptimal ex post. Thus, irreversibilities in

sunk control capital and in investments that impact environmental stocks and flows

lead to learning effects that pull in opposite directions—namely, regret over first-stage

decisions given updated information and anticipation of second-stage decisions. It is

unclear whether these conflicting irreversibilities suggest that near-term investments

in abatement capital should be increased (to retain the option to protect against

potentially serious impacts from the nondegradable stock of greenhouse gas emissions)

or decreased (to wait for more information). Optimal strategies in these contexts must

balance prudence and exigency, embodying the spirit of the Latin adage festina lente

119
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(“make haste slowly”).

Given the realizations of uncertainties and near-term decisions, the relative mag-

nitudes of these losses and their associated probabilities will determine the net impact

of learning and whether the most appropriate near-term hedging option consists of

precautionary investments or delays. These dynamics are compounded by overlapping

uncertainties beyond merely climate policy, which may push investment in opposite

directions and may be dependent on the incentives of stakeholders.

The model results suggest that the threat of stranded abatement investments

outweighs precautionary effects and results in a propensity to delay near-term expen-

ditures. This result mirrors other modeling efforts for power plant investments using

other approaches and a more limited number of uncertainties (Knopf et al., 2010;

Patiño Echeverri, Fischbeck, and Kriegler, 2009; Tuthill, 2008). However, although

investments in coal with carbon capture and storage (CCS) are delayed under the

stochastic strategy (relative to the deterministic expected-value case), it is impor-

tant to note that nuclear and lower-cost wind are still deployed before uncertainty

is resolved, which indicates that they are comparatively low-regret hedging technolo-

gies. Similar to the results of De Cian and Tavoni (2012), uncertainty about climate

policy does not materially impact the first-stage abatement level or generation but

mostly affects the portfolio of new capacity additions. The absence of penalties to

disincentivize near-term emissions until a price signal is established greatly reduces

the salience of the risks of inaction and the impetus for precautionary efforts.

The long-lived nature of electric sector assets and the non-ergodic nature of their

evolution suggest that suboptimal investments may become locked in or stranded if

assumptions during the planning process are proven incompatible with the realized

state of the world, as described by Usher and Strachan (2012). Within the literature

on investment under uncertainty in the presence of irreversibilities and externalities

(Kolstad, 1996), the welfare losses associated with lock-in and stranded investments

are leading justifications for selecting reversible or quasi-reversible abatement options

over irreversible ones that are long-lived and capital-intensive. Here, the stochastic

hedging solution avoids building CCS-equipped coal capacity in early periods due

to concerns that the technology could be stranded if the long-term climate policy is
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either too high or too low. There is a limited, mid-range band of carbon taxes where

CCS can flourish so that, after accounting for uncertainty, it is optimal to wait and

see if the realized tax falls in this area before construction. In the meantime, the

stochastic strategy relies on increased near-term utilization of existing natural gas

combined cycle (NGCC) units and builds only nuclear and lower-cost wind, which

are cost-competitive enough to remain online under a wider range of scenarios.

Ultimately, the net impact of learning on either delaying or making precautionary

investments depends on the convexity or concavity of the marginal cost function and

the shape of the probability distributions for uncertainties (Webster, 2002). Analyt-

ical results from the literature on learning in the presence of irreversibilities suggest

that concave (convex) marginal costs lead to less (more) of an activity, according

to Epstein (1980). However, for a cost-effectiveness framework like this one, where

second-stage carbon taxes are uncertain instead of damages from irreversible stock

effects (i.e., the distribution over carbon taxes is not equal to the distribution over the

social cost of carbon), the marginal costs during the second-stage are not strongly

dependent on first-stage emissions. Comparatively low adjustment costs (and the

high substitutability of supply-side technologies) allow for a more rapid transition

once information is revealed, even if initial installation decisions are shown ex post to

be incompatible with the realized state of the world.1

The direction of the learning effect in this model is influenced primarily by the

shape of the probability distribution over the second-stage carbon tax instead of by

the curvature of marginal costs. When the expected carbon tax is low and there is

a comparatively small probability of a stringent climate policy, then the possibility

of learning leads to lower first-stage investments in abatement capital, which is the

case here. Due to the concavity of the cost function in the realized carbon tax,

the regret from undertaking supererogatory abatement efforts (in which irreversible

investments in control capital cannot be recovered) dominates the regret from learning

that the carbon tax is higher than the expected value. This occurs because the electric

1Although the model captures frictions like construction delay times, it does not account for other
constraints like those associated with knowledge stock and learning effects, which may be appreciable
if a rapid transition moves toward an energy system with new technologies. The exclusion of these
effects likely biases downward first-stage investments and the VSS.
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power industry is essentially decarbonized at the mean value of the distribution,

which suggests that more stringent taxes would not significantly impact costs for

utilities and generators. Notably, this skewness effect in a cost-minimization, policy-

compliance setting works in the opposite direction of that in a welfare-maximization,

social benefit-cost framework, since the latter incorporates uncertainty with convex

loss functions, which have much larger magnitudes of regret in high-damage states,

as in Webster (2002).

The small magnitudes of learning effects are due in part to insignificant interperiod

interactions in the capacity planning and unit dispatch model. Although the bottom-

up detail in the representation of capital stock permits more interperiod effects relative

to top-down models, there are still many important processes that are excluded from

the model, which would cause the first-stage strategy to have a greater impact on

second-stage marginal costs. First, vintaging effects and infrastructural inertia of the

capital stock, particularly if constraints lead a portion of the residual capital stock

to become less malleable, may delay shifts in technological adoption when prices

change, which would lead to higher marginal cost reductions in later periods. Even

though the capacity planning model has a high degree of flexibility (as discussed in

Section 5.3), it has less malleability and more real-world frictions (e.g., construction

lead times, upper bounds on capacity expansion) than many top-down models due to

factors like explicit modeling of retirements, construction lead times, and constraints

on building new capacity. Second, the model does not include damages from climate

change, which can lead to dramatic interperiod interactions if the model represents a

threshold response. Finally, the rate of technological improvement or energy efficiency

adoption may be influenced by climate policies. The incorporation of endogenous

technological change, for instance, can lead to more precautionary investments in

the first stage (Webster, 2002). Thus, the conclusion to be drawn from this work is

not that the likelihood of benefitting from stochastic hedging is small for near-term

decisions but that the current generation of energy-economic models (even those that

have a fair amount of detail in capacity planning and unit dispatch decisions) may be

inadequate for capturing the details that are most relevant to questions of uncertainty

and sequential learning.
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5.2 Inducing Anticipatory Actions

Uncertainties that lead to first-stage precautionary efforts can be conceptualized as

ones that induce so-called “anticipatory actions” (Labriet, Loulou, and Kanudia,

2010). Random events that induce anticipatory actions (e.g., a climate policy uncer-

tainty that causes supererogatory abatement relative to the deterministic case) merit

explicit treatment and modeling of uncertainty in a sequential manner. In this sense,

uncertainties with appreciable VSS metrics can be linked to ones that cause anticipa-

tory actions. As the previous section emphasizes, the decision about whether to take

action now or to wait for better information depends on the risk and opportunity cost

of delay. In the case of climate policy uncertainty, the model results demonstrate an

anticipatory absence of investment rather than anticipatory action, which leads to a

nonzero VSS.

These conclusions underscore and reframe the notion that there are no silver bullet

abatement technologies in the electric power sector. Evocations of this no-silver-bullet

mantra typically emphasize the notable dearth of technologies that have the scale,

wide applicability, cost characteristics, and technological readiness to reduce emissions

dramatically in the context of meeting a deterministic emissions target. In this paper,

the lack of silver bullet technologies is reflected in the conspicuous absence of near-

term hedges that are robust for all uncertainties. Nuclear and low-cost wind are the

only technologies deployed widely under the stochastic hedging strategy, though many

large-scale nuclear builds may be costly in the next several years due to the increasing

competitiveness of electricity markets and utilities’ small market capitalizations. Also,

model results suggest that technological cost and performance uncertainties do not

induce anticipatory actions, with each having a zero-valued VSS. This is true when

examining uncertainties within a cost-effectiveness framework (i.e., since capital cost

uncertainties for future periods do not alter near-term abatement) or when there is

no construction escalation over time.
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5.3 Optionality of Capital Investments

Why is the value of information gathering (i.e., the expected value of perfect infor-

mation or EVPI) so much greater than the value of including uncertainty (i.e., the

value of the stochastic solution or VSS) in electric sector planning? As shown in

Figure 5.1, analyzing the EVPI and VSS involves comparing the expected costs of

the expected-value (zd), stochastic (z∗), and perfect information (zws) strategies.

The EVPI essentially measures the opportunity cost of delaying action. If access

to early information equips utilities to make different decisions, the information has

value. Otherwise, the EVPI is zero, and the decision-maker can delay decisions cost-

lessly until uncertainties are resolved. The high EVPI found in this analysis suggests

that there is a limited availability and adequacy of the hedging options in the electric

power sector.2

Objective function  
value (cost) 

VSS EVPI 

zd = Eωf(xd,ω)

z∗ = min
x

Eωf(x,ω)

zws = Eωz
ω

Figure 5.1: Number line comparing values that comprise the EVPI and VSS metrics.
The spacing between values is illustrative.

The VSS measures the degree of asymmetry in the decision-maker’s loss function

and the degree to which suboptimal decisions impact the objective function value.

The VSS is large (i.e., the expected-value solution is a bad approximation for the

stochastic solution) when:

1. The optimization problem exhibits nonlinear or nonconvex behavior

2This is another way of expressing the notion that there are no alternatives in the electricity
generation choice set that are robust across all of the uncertainties considered here. There is no
single technology that is perfectly suited to all states of the world.
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2. Probability distributions on uncertain quantities are asymmetric (i.e., exhibit

considerable skewness)

3. Dependence exists between random variables

4. Random variables have large supports

The VSS is small here due to many factors. Regarding point (1), the capacity plan-

ning problem is predominantly linear in nature, since many of the nonlinearities in

the climate system and utility functions are not included from the decision-maker’s

perspective, which is framed within a cost-effectiveness framework with uncertain

carbon taxes. As described in Chapter 3.4, the distributions used in this analysis are

largely symmetric, which means that (2) does not apply. Also, the distributions were

created to avoid any explicit dependence between random variables (3) and to bypass

large supports (4).

It is important to note that the EVPI and VSS are a small fraction of the objective

function value. The EVPI of $162 billion is 3.8 percent of the objective function value

of $4.3 trillion, and the VSS of $36 billion is 0.8 percent. Figure 5.2 shows that 64

percent of the total costs come through dispatch and maintenance costs of capital

(including fuel costs), whereas capital investments comprise just 24 percent. As a

result, if first-stage decisions are suboptimal for the realized scenario ex post, the

total losses amount to the stranded costs of assets, which are only a small fraction

of total costs across the time horizon. For instance, if the decision-maker builds too

many NGCC units only to learn that gas prices are higher than expected, then the

financial losses for a single power plant would only amount to perhaps $1 billion of

the $4,300 billion objective function value. Recourse decisions that are made after

information is revealed allow the system to adapt and to avoid incurring increased

operating costs in perpetuity if initial decisions are wrong.3

3The decision to shut down a facility can be viewed as an investment in the sense that initial
payments to end contractual commitments generate prospective utility in the form of decreased
future losses (Dixit and Pindyck, 1994). In the processes of capital budgeting and resource planning,
the options to abandon an investment or halt operation as market conditions deteriorate (e.g., if
factor costs like fuel prices exhibit sustained growth) can be valuable for avoiding fixed and operating
costs while potentially gaining revenue from the resale value of capital equipment.
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Figure 5.2: Decomposition of the $4.3 trillion objective function value of total dis-
counted costs.

This effect suggests that there are two relevant option values associated with

power plant investments. The most commonly discussed and modeled value is the

option of firms to invest in capital-intensive and essentially irreversible generators

that can be delayed (Tuthill, 2008), which is analogous to a financial call option.

This perpetual call option gives utilities the right, but not the obligation, to pay a

specified amount (i.e., the strike price of the overnight capital cost) to receive an asset

(i.e., a power plant) with uncertain future cash flows due to stochastic processes like

prices of emissions permits and fuels. If and when the firm exercises this option to

build the plant (i.e., when the asset’s value sufficiently exceeds the exercise price and

the option is “in the money”), the firm gives up the opportunity to wait for additional

information about the future values of unknown quantities.4

The above analysis suggests that the second relevant concept is that of a put

option. After constructing a power plant, generators have the perpetual, costless,

and quasi-reversible put option to generate electricity. They have the right, which

they need not exercise, to pay the strike price (i.e., fuel costs) to receive an asset (i.e.,

revenue from generating and selling electricity). This perpetual put option allows

generators to refuse to generate at a loss if the investment is later revealed to be

4The claim that regulatory uncertainty depresses investment by creating an option value of delay
is investigated empirically by Ishii and Yan (2004), which demonstrates this effect for investments
between 1996 and 2000 in the United States under uncertainty about regulatory restructuring.
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incompatible with the realized state of the world (e.g., if fuel prices or carbon taxes

are too high).

The call option pertains to the initial capital investment decision, while the put

option is relevant to the operational decision by firms once the unit has been con-

structed. Both options must be accounted for in the capacity planning problem.

However, the choice of when and if to invest in the call option is essentially the ca-

pacity planning problem, which implicitly incorporates the downstream put-option

(recourse) decision.

Ultimately, the resiliency that makes such options possible in electric sector plan-

ning comes through a variety of industry-specific sources:

• The ability to react and make decisions after new information becomes available

• Low opportunity costs associated with irreversible investments

• Quick construction lead times relative to operating lifetimes

5.4 Policy Implications

The results in Chapter 4 can help to inform policy instrument choices and timing

decisions associated with climate change. Given dynamics that discourage precau-

tionary capital investments in control equipment in the presence of uncertainty, these

results suggest that a price on carbon may not be enough to properly incentivize util-

ities to internalize greenhouse gas externalities. Figure 4.9 illustrates that the most

substantial cost risks and expected losses occur when utilities and generators make

near-term decisions believing that the prospects of a low (or nonexistent) climate

policy are increasingly likely.

Given that this outcome would likely be socially suboptimal, a tiered approach to

climate policy may be a more effective means of meeting many simultaneous goals. A

layered (i.e., tiered) approach would offer simultaneous incentives and policy mech-

anisms for reducing emissions at federal, state, and local levels like carbon taxes,

research and development (R&D) subsidies, and technological standards. Although
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the policy redundancy may make any given policy less efficient, the potential co-

benefits outside of reduced environmental damages may outweigh such deadweight

losses (e.g., subsidized R&D can remedy innovation externalities).

A second policy implication for the electric power sector is that sequential or staged

approaches may be useful in reducing greenhouse gas emissions even before compre-

hensive legislation has been passed to put a price on carbon. The policy goal of reduc-

ing carbon emissions may be more politically feasible and may induce greater com-

pliance if multiple policies are staged sequentially over time. Again, this redundant

and precautionary approach to avoiding irreversible investments in carbon-intensive

capital could be important if more ambitious efforts to curb emissions through direct

emissions-pricing policies prove to be politically infeasible in the future. Uncertainty

about political processes, for instance, may justify these complementary regulations.

For example, before enacting climate legislation, the United States Environmental

Protection Agency has proposed new source performance standards under Section

111(b) of the Clean Air Act, which would effectively prevent new additions of coal-

fired power plants without CCS. If enacted soon, these standards for new power

plants would prevent one of the largest carbon-emitting technologies from retaining

or expanding its market share even if a long-term climate policy fails.5 Performance

standards have the benefits of enhancing institutional credibility for establishing firm

commitments to reducing emissions and also of ameliorating the potential problem of

firms racing to install capacity before more restrictive rules come into effect (e.g., if

firms anticipate grandfathering or exemptions). Again, although an economic anal-

ysis of seemingly redundant policies in a first-best setting would suggest that this

approach imposes additional costs on firms and consumers, this analysis shows how

such policies can be economically efficient in a second-best setting where the actual

timing, stringency, or implementation of a carbon tax are suboptimal.

5New source performance standards also can be effective, because they leave open the possibility of
constructing CCS-equipped coal instead of banning coal outright, which may make such approaches
more politically viable and economically efficient. Lashof et al. (2012) detail the legal basis for
setting such power plant regulations and also discuss how standards can provide an incentive to
invest in precautionary abatement capacity due to banking provisions. Another regulatory action
that would achieve similar results would be the proposed Mercury and Air Toxics Standards for
Power Plants.
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The use of nested policy instruments with periodic reassessments is consistent

with an adaptive approach to managing climate risk. The objective of adaptive man-

agement is to design policies, decision architectures, and institutions that encourage

monitoring and active learning about systems and allow for flexibility, adjustment,

and adaptation as new information becomes available. Sequential decision-making

frameworks like the one used here are ideally suited to provide insights and decision

support for adaptive management. The ozone regime established through the Mon-

treal Protocol is a noteworthy example of an effective adaptive management frame-

work and the only major international environmental effort to date to adopt such a

system with repeated negotiations and dynamic ratchets that adjusted controls, incor-

porated additional chemicals, and developed new institutions and mandates over time

(Parson, 2003). Adaptive management also improves upon some of the shortcomings

of a contingent agreement approach to dynamic policies in environments of extreme

complexity and uncertainty. Approaches based on contingent responses require the

ex-ante specification and enumeration of all possible scenarios and optimal responses

many years in advance, which neglect the potential for unexpected sources of infor-

mation and the possibility that such information may generate greater uncertainty

and novel questions.
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Chapter 6

Energy Technology R&D Portfolio

Management

This chapter introduces a stochastic research and development (R&D) portfolio man-

agement framework and presents results for energy technology R&D strategy in a

carbon-constrained world. In previous chapters, the capacity planning model made

first-period investment and operational decisions under uncertainties about future

policies, technologies, and fuel prices. Technology development could lower costs when

second-stage decisions are made. However, the model assumed that first-stage deci-

sions did not influence the probability distributions over potential outcomes, which

meant that future technological characteristics were insensitive to near-term decisions.

Figure 6.1 illustrates the decision diagram for the capacity planning model developed

in Chapter 3, where technological and economic uncertainties were exogenous.1

1Boxes in the diagram represent decisions and are assumed to be part of a no-forgetting network
(i.e., any information available to parents of a decision node are also available to the node itself).
Uncertainties are represented as ovals, though the simplified representation in Figure 6.1 groups all
uncertainties as either technological or economic. The hexagonal nodes are special deterministic
nodes representing the values that decision-makers are optimizing.

130
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Figure 6.1: Decision diagram for the capacity planning model from Chapter 3.

This chapter describes and uses a model in which investments in R&D programs

can be made at the beginning of the time horizon.2 The decision-maker then se-

quentially learns whether the R&D program is successful by 2015 when making first-

stage capacity installation decisions. The resolutions of all endogenous technological

uncertainties and exogenous market uncertainties occur before making second-stage

decisions. Figure 6.2 shows the decision diagram for this model.3 This chapter for-

mulates the R&D decision model labeled “R&D Investment Decisions” in Figure 6.2.

The R&D allocation model uses empirically-derived innovation production functions

to compare the benefits and costs of energy technology development programs.

2The R&D strategist is assumed to make a single R&D allocation decision. Blanford and Weyant
(2007) use a sequential decision framework with two R&D decision periods but find the impact of
future R&D choices on near-term investments to be small. This result suggests that the single-stage
simplification used here is reasonable for tractability while maintaining important dynamics of the
R&D decision.

3Note the influence arrow on the diagram from the R&D portfolio allocation decision to the
technological uncertainties. This arrow means that the initial R&D decisions influence probability
distributions for the technical cost and performance uncertainties.
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Figure 6.2: Decision diagram for the integrated R&D strategy and capacity planning
model from Chapter 6.

The model is distinguished from frameworks by other researchers in its stochastic

diffusion mapping through the two-stage capacity planning model described in Chap-

ter 3. The key attribute of the model is that, when R&D funding and first-stage

decisions are made, the realizations of other exogenous uncertainties (e.g., abatement

stringency) are unknown, which translates into uncertainty about diffusion markets

for the technologies upon which R&D acts.

Section 6.1 situates this work within the context of the existing energy R&D

literature and highlights the contributions of the framework and results. In particular,

this section describes the advantages of a stochastic representation of market diffusion

and R&D success valuation. Section 6.2 provides a mathematical formulation for the

R&D portfolio model and determines first-order conditions for optimality. Section 6.3

discusses the results of these modeling efforts and their policy implications. Finally, a

summary of these findings and potential extensions are briefly described in Section 6.4.
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6.1 Introduction

6.1.1 Background

Managing technological change is important for industry, government, and society. In

addition to expanding an economy’s production-possibility frontier and encouraging

growth, the development of new technologies and improvement of existing ones can

enhance policy responses to climate change. The current set of technological alterna-

tives is likely insufficient for achieving meaningful abatement to manage climate risk

at a socially acceptable cost. However, research, development, and demonstration

efforts can introduce new options in future periods. Abatement and technological

R&D are inextricably linked in that a given level of abatement influences the set of

technologies available for deployment, while the given set of available technological

options simultaneously influences the optimal level of mitigation.

No matter if an environmental externality is fully or partially internalized, envi-

ronmental policy alone (e.g., a carbon tax) likely does not provide sufficient incentives

to foster innovation and technological diffusion at a socially optimal level.4 The ef-

fect of a contemporaneous carbon price signal on R&D by private firms is insufficient

to induce longer-term invention and innovation activities, especially for basic R&D.5

Innovation market failures require complementary instruments that typically have a

normative rationale of correcting the misallocation of private resources to R&D. The

most commonly cited innovation market failures and barriers leading to suboptimal

4The literature on induced innovation suggests that alternative policy instruments have markedly
different impacts on the incentives for innovation and diffusion of “clean” technologies (Fischer,
Parry, and Pizer, 2003; Jung, Krutilla, and Boyd, 1996; Milliman and Price, 1989). For instance,
using empirical evidence from cap-and-trade programs for sulfur dioxide and nitrogen oxide, Taylor
(2012) suggests that these policies may not provide sustained incentives to encourage R&D and may
induce additional uncertainty.

5Conversely, technology-oriented policies like low-carbon technology R&D subsidies may lead to
emissions reductions in the absence of a climate policy but are exceedingly inefficient in achieving
abatement goals if used as substitutes instead of complements. The combined implementation of an
emissions price and technology policy appreciably lowers costs compared with the emissions-price
instrument alone (Fischer and Newell, 2008).
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R&D allocation levels are appropriability, technological lock-in, knowledge externali-

ties, adoption externalities, and incomplete information.6

Despite the considerable research attention dedicated to optimal instrument choice

for internalizing emissions-related externalities under uncertainty (Baker, 2009), there

is comparably little research on strategies for energy technology R&D portfolio man-

agement, even though the future technological state is an important factor in policy

choice alongside the discount rate, uncertainty, and the assumed benefits of abate-

ment. For large-scale energy-economic and integrated assessment models, many

frameworks assume that technological cost and performance characteristics improve

exogenously over time (i.e., the autonomous rate of technological change is not influ-

enced by changes in policy or changes in relative prices) or that endogenous technical

learning will lead to technological change with increasing deployment. It is uncommon

to link R&D decision models with energy-economic models.

Most papers that examine R&D decisions under technological and policy-related

uncertainty are theoretical and only examine allocations for a single technology, as

discussed in the review by Baker and Shittu (2008). Baker and Solak (2011) summa-

rize the effect of uncertainty on energy technology R&D portfolios. Blanford (2009)

and Blanford and Weyant (2007) formulate an R&D decision framework but use il-

lustrative parameters and assume exogenous market uncertainties are resolved when

R&D decisions are made. Baker and Solak (2011) use elicited data in a stochastic

R&D decision model but do not consider exogenous market uncertainties. Baker and

Solak (2013) use a stochastic programming version of DICE to examine R&D port-

folio management. However, the only exogenous uncertainty considered is climate

change damages, and the sequential decision-making model represents technologies in

a highly aggregated manner with marginal abatement cost curves.

6These theoretical arguments supporting the proposition that private firms underinvest in knowl-
edge creation and innovative activity are confirmed by empirical research, which suggests that so-
cial rates of return to R&D investments exceed private rates due to third-party spillovers (Bloom,
Schankerman, and Van Reenen, 2013; Griliches, 1992; Mansfield et al., 1977). Although it is chal-
lenging to quantify the relative significance of these market failures and consequently to prioritize
the effectiveness of potential interventions, it is at least possible to link policy instruments to specific
market failures (Jaffe, 2012). The allocations toward public R&D discussed in this chapter most
closely target issues of appropriability and capital market failures.
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6.1.2 Motivations and Contributions

The primary objective of this research is to use the framework developed in previous

chapters to inform questions of energy technology R&D strategy. Uncertainty is a

fundamental characteristic of the R&D process. The stochastic and dynamic aspects

of these questions are significant structural features of R&D strategy, including un-

certainty in market and policy conditions, the relationship between R&D investments

and technological outcomes, and the ability to adjust decisions over time based on

learning. Despite the centrality and policy relevance of uncertainty, there is a need for

new tools to cope with uncertainty explicitly and to provide decision-making support

for R&D investments (National Research Council, 2007, 2005).

This research also informs outstanding questions about how to value technological

advances. Measuring the benefits of R&D expenditures typically involves two dis-

tinct steps—namely, modeling the relationship between R&D portfolio investments

and their potential outcomes as well as valuing these outcomes. This research investi-

gates R&D success valuations in a sequential decision-making setting. This approach

provides a more accurate representation of the R&D decision-maker’s dilemma in

which allocation decisions must be made in an uncertain market environment, where

prospective conditions are subject to many contemporaneous sources of uncertainty.7

Section 6.1.4 discusses the benefits and novelty of this approach.

Another objective is to parameterize innovation production functions using results

derived from expert elicitations rather than using ad-hoc values. Previous innovation

production function analyses (Blanford, 2009, 2006) use stylized values that are the

same across all technologies. Although these analyses illustrate the framework, they

offer limited insight into actual R&D allocation decisions. In contrast, the work here

provides some empirical grounding for the chosen values that link model representa-

tions with on-the-ground expectations for R&D program characteristics. This trait,

combined with the stochastic valuation model and larger portfolio of R&D programs,

7A related contribution is to develop a better understanding of how regulatory uncertainty influ-
ences innovation. Recent work has shown how demand-pull actions from regulation can be as large
of a driver of innovation as technology-push R&D expenditures (Taylor, 2005), which suggests that
accounting for the relationship between regulatory uncertainty and R&D activity is important.
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suggests that model outputs offer a greater degree of normative decision support

compared with previous analyses.

An overarching goal of this chapter is to embed the treatment of R&D control

within the broader context of energy modeling. There is a long history of using energy-

economic and integrated assessment models to quantify the benefits of technological

developments, but only a limited amount of work that explicitly links these models

with an R&D portfolio framework. The research here leverages the experience, tools,

and insights from the energy modeling community to address the R&D portfolio

allocation problem.

6.1.3 Conceptualization of R&D Success

There are many ways to conceptualize the success of an R&D program (Chan et al.,

2011). First, R&D success can be modeled as increasing the (binary) probability of

success in achieving specific technical or cost metrics for specific technologies. For

instance, Baker, Chon, and Keisler (2009a) define R&D success for advanced solar

technologies as meeting fixed targets for efficiency, operating lifetime, and manu-

facturing cost. Second, success can reduce the number of years required to reach

technical or cost targets, which formalizes the notion that R&D success does not pro-

vide benefits in perpetuity. Blanford (2009) adopts this framework in characterizing

one “optimistic” technological pathway (i.e., with successful R&D) and another “pes-

simistic” pathway (i.e., one that achieves the same targets with a delay). A final way

to conceptualize R&D success is as adjusting distributions over cost and performance

metrics, which is the definition used in this work. This stochastic conceptualization

has not been implemented as widely as the others; however, some recent expert elici-

tations have adopted this definition (Anadon et al., 2011), which allows these elicited

distributions to be used in this framework.

There are many benefits to this conceptualization of R&D success. First, many

scientific and engineering experts have intuitions for ranges of possible outcomes from

research endeavors but have a more difficult time assessing probabilities of reaching a

priori cost and performance targets (Chan et al., 2011). This tendency suggests that
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elicitations would be facilitated and the quality of their outputs enhanced by struc-

turing these probability assessments according to this conceptualization. Second, the

first two conceptualizations of R&D success mentioned earlier are subsumed by this

probabilistic approach. Endogenous probabilities of reaching fixed targets or acceler-

ated development can both be incorporated into this flexible framework. Finally, the

largest advantage of this probabilistic framework is its versatility in describing the

impacts of R&D success. As Figure 6.3 suggests, this conceptualization is capable of

representing a diverse set of effects on distributions:

• Shifting the mean (or other measure of central tendency) of a distribution, as

shown in the cost reduction from C to C � in Figure 6.3

• Reducing the variance

• Eliminating fat tails (i.e., removing the possibility that a technology is always

too expensive for deployment), which is shown in the elimination of probability

mass from the far-right side of the distribution in Figure 6.3

• Combining the aforementioned effects

This versatility suggests why this approach, while more intuitive and capable of com-

plex representations, has not been implemented widely in a modeling setting. This

conceptualization is most useful when the probabilistic information can be fully in-

corporated in the planning process, which requires a framework where uncertainty is

treated explicitly (e.g., the stochastic programming setting here).
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This work adopts a high-level characterization of optimal aggregate investments in

R&D programs. Strategies make allocative choices for programs with longer-term

horizons using a social perspective rather than an individual firm’s perspective.Figure 6.3: Illustrative example of the effect of an R&D success on an energy tech-
nology’s cost distribution.

Conditional on the success of an R&D program (which is determined through the

R&D portfolio model described in Section 6.2), the valuation model uses the R&D

success distribution. If the program fails, the R&D expenditure is considered to be

a sunk cost, and planning decisions are made with the technological baseline distri-

bution. Realistically, this relationship is more complicated, as there are many levels

of success and failure with corresponding distributions (i.e., a distribution of distri-

butions that is conditional on the R&D allocation). However, this more complicated

treatment would be difficult to implement due to the large number of probability

assessments and also to the computational intensity of the resulting problem.

6.1.4 Assessing Benefits and Modeling Market Diffusion

In the literature on technology R&D optionality, Dixit and Pindyck (1994) note that

there are two uncertain underlying assets involved. The first is the state of technol-

ogy, which R&D expenditures influence. The second is the set of exogenous market

conditions (e.g., advances in substitute/complementary/enabling technologies, public

acceptance, and regulatory environment). The energy technology R&D literature has

primarily focused on the first uncertainty and treated the second deterministically
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using existing energy-economic models. However, nearly all energy-economic and in-

tegrated assessment models do not represent the stochasticity or hedging potential

of technologies and do not treat market uncertainties explicitly through sequential

decision-making frameworks (Kann and Weyant, 2000). This work is the first to

incorporate uncertainty explicitly into a technology-rich R&D valuation model.

Market acceptance is a key determinant of the economic success and valuation of

R&D programs. Uncertain economic and political conditions in the future market

landscape are important for assessing the diffusion potential of energy technologies.

Whether in ex-ante prospective R&D decisions or in ex-post program evaluations,

all applicable economic sectors, regions, and technologies and their associated uncer-

tainties should be concurrently analyzed to capture the diffusion potential of tech-

nologies.8 Diffusion depends on many interrelated factors that may be exogenous to

R&D itself, including parallel developments in related technologies, factor costs, the

policy environment, demand characteristics, and more general macroeconomic trends.

For example, the stringency and timing of an internalization policy for greenhouse

gas emissions is an inherently uncertain but important determinant of the value of

R&D success. Taylor (2005) provides a summary of the literature linking regulatory

stringency, expectation, and uncertainty with innovation.

In a report requested by Congress to develop a methodology for assessing prospec-

tive benefits of energy R&D, the National Research Council (2005) refers to the

processes of characterizing and incorporating uncertainty as “essential features of

prospective benefits evaluation.” The report highlights three types of uncertainty:

uncertainty about the outcome of a specific R&D program, uncertainty about a tech-

nology’s market acceptance, and uncertainty about the future state of the world,

which incorporates factors that are unrelated to the technology itself. Given the im-

portance of market risks, the research in this chapter is the first to implement these

8Measuring the benefits of R&D more generally is challenging to conceptualize and quantify
(National Research Council, 2005). In particular, spillovers and social benefits require a detailed un-
derstanding of complex linkages in an economy and the cascading secondary impacts of technological
advance, which makes quantification more difficult as evaluations move away from the innovation
itself. The measurement problem of connecting research in the present with uncertain market con-
ditions in the future is inherently difficult for private firms and perhaps even more challenging for
public decision-makers who typically have lower access to information about market conditions.
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modeling suggestions by incorporating all three sources of uncertainty in a unified

modeling framework.9 This research also extends the National Research Council’s

recommendations by offering a portfolio design model to consider R&D allocation

questions for a range of technologies simultaneously, which more accurately captures

the interactions between technological uncertainties and the corresponding changes

in expected benefits of R&D.

Another motivation for carefully quantifying and assessing uncertainty is that

uncertainty about market conditions may be a barrier that causes underinvestment in

R&D by private firms (Cohen and Noll, 1991).10 Like all ventures, R&D investments

face many risks that lead investors to demand a risk premium, which requires an

estimation of risk by forecasting market conditions in which diffusion may occur.

These uncertainties are especially challenging to quantify, since there is little relevant

historical data to construct analogues for many inventions and innovations. Thus,

public R&D projects are likely exposed to greater risk and require analysis that can

explicitly aid in decision-making under uncertainty.

Given that the valuation of an R&D program depends on its diffusion potential,

models that assess prospective deployment rely on assumptions about the decision-

making approaches of economic agents and about the treatment of uncertainty in the

planning process, as illustrated in the capacity planning results in Chapter 4. The

explicit inclusion of uncertainty using a here-and-now approach means that exogenous

market uncertainties like the climate policy are unknown when R&D allocation or

first-stage decisions are made, as shown in Figure 6.4.11 This approach closely reflects

the situation faced by many decision-makers (i.e., since the future state of the world

9The National Research Council (2005) states that, “Market risk factors are often critical to
evaluating the potential of an R&D program. Indeed, for investments in fairly specific technologies,
the risks associated with market acceptance may overwhelm those associated with technical success.”

10Information asymmetry about a technology’s potential introduces issues of adverse selection
and the winner’s curse, which may raise the cost of capital for financing the development of new
technologies (Jaffe, 2012).

11Since deployment and dispatch decisions are made by utilities and generators, this framework
assumes that realizations of market uncertainties cannot be influenced by the decision-maker. Al-
though these uncertainties are treated exogenously here, climate policy choice is endogenous to the
R&D strategy problem from a social planner’s perspective, as optimal abatement is influenced by
the state of technology and expectations about future developments (Blanford, 2006).
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cannot be accurately predicted ex ante) and is used in this modeling work. In contrast,

the wait-and-see approach to uncertainty analysis assumes perfect information about

economic and policy uncertainties when initial decisions are made. This approach is

implicitly assumed in models like Anadon et al. (2011) and Blanford (2009).!"#$%&'()*+(&*$,-./-01&$213(.)!
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Figure 6.4: Decision diagram comparison of wait-and-see (i.e., perfect information)
and here-and-now (i.e., stochastic) R&D valuation models. Uncertainty about the
stringency of climate policy is used as an example of a market risk that is exogenous
to technological uncertainties but is a key determinant of diffusion.

It is unclear prima facie whether the explicit inclusion of uncertainty using a

stochastic hedging approach increases or decreases the expected value of R&D suc-

cess. As the metrics in Chapter 3.3 suggest, it is unambiguous that the failure to

consider uncertainty in the decision-making process leads to suboptimal performance

in expectation. However, different decision-making approaches may understate or

overstate the value of market penetration if uncertainties and competition are not
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considered. The breeder reactor program in Section 6.1.5 is an example where insuffi-

ciently accounting for diffusion risks caused a systematic upward bias in the valuation

of technological change, which ultimately translated into higher than optimal R&D

funding. This conclusion is not the case generally, as the proof in Appendix C demon-

strates. The influence of different decision-making approaches on the value of R&D

success and ultimately on optimal R&D investment depends on:

1. How uncertainties interact (i.e., the objective function, constraints, and param-

eterization of the optimization problem)

2. Form of the distributions chosen

3. Change in technological characteristics brought about through R&D programs

Ultimately, this ambiguity is a significant motivation for the modeling research pre-

sented in Section 6.3 to understand the link between the value of R&D success and

decision-making approaches under uncertainty.

6.1.5 Case Study of the Breeder Reactor Program

The United States (US) breeder reactor program illustrates a federal R&D program

in which overconfidence and the absence of careful consideration of exogenous market

uncertainties created suboptimal investments.12 The diffusion of the breeder reactor

and the value of associated R&D efforts hinged on factors related to electricity demand

and the deployment of a complementary technology (light-water reactors), which were

uncertain when the breeder reaction program began.

The strongest technical and economic argument in favor of breeder reactors stemmed

from their ability to generate more fissile material than they used due to their high

neutron economy (i.e., the ratio of new fission isotopes per reaction exceeds one).

Analysts at the program’s inception viewed the reactor as a long-run solution to

perceived constraints on uranium supply. Ultimately, the commercial prospects and

12An in-depth analysis of the breeder reactor program can be found in Chapter 9 of Cohen and
Noll (1991).
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economic attractiveness of breeder reactors were strongest when the uranium price

escalated enough to offset higher capital costs relative to light-water reactors.

Ultimately, three linked problems eroded the economic rationale for the breeder

reactor program. First, uranium discoveries and new approaches for enrichment drove

down fuel costs during the lifetime of the project. Meanwhile, construction cost

escalation meant that these fuel costs were a smaller fraction of the reactor’s lifetime

costs. These factors alone dimmed the prospects for breeder deployment. Second,

demand for conventional light-water reactors dropped precipitously despite lower fuel

costs.13 This downturn decreased the commercial desirability of liquid metal fast

breeder reactors and the value of their associated R&D program. A final problem

for the breeder reactor was the decline in demand during the early decades of the

program, which delayed new construction of all generators and specifically reduced

new orders for nuclear capacity.

Benefit-cost analyses of the project considered a limited range of values in their

sensitivity analyses but mainly relied on a deterministic capacity expansion model to

assess the breeder’s commercial desirability with point-estimates “considered to be

most likely” at the time (Cohen and Noll, 1991). Ultimately, the economic attrac-

tiveness of breeder reactor R&D was compromised by external conditions and not

by the R&D efforts themselves. In retrospect, R&D investment decisions may have

been avoided if decision-makers were better equipped with portfolio analysis tools that

more carefully provided decision support under multiple simultaneous uncertainties.14

13The uranium price depends jointly on uranium ore reserves and demand, which are influenced
by the deployment of light-water reactors. The market penetration of these reactors depend on
the relative economics of nuclear and other competing generation options as well as by electricity
demand projections.

14This conjecture is conditional on decisions being made on the best-available advice from modeling
efforts. However, the analysis in Cohen and Noll (1991) suggests that breeder reactor decisions
were clouded by political incentives and that the program’s cancellation date extended beyond
recommendations from benefit-cost studies with the most up-to-date information.
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6.2 Analytical Framework

6.2.1 Assumptions

This work adopts a high-level characterization of optimal aggregate investments in

R&D programs.15 Strategies make allocative decisions for programs with longer-term

horizons using a social perspective rather than an individual firm’s perspective.16

The perspective of the public R&D manager (i.e., technology strategist) does not

necessarily mean that R&D activities are undertaken by the government. Instead,

this frame suggests that R&D efforts produce knowledge that can be considered a

public good (i.e., non-rivalrous and non-excludable). The model implicitly assumes

that there are no proprietary research boundaries for applying research outcomes,

as the publicly disseminated knowledge generated through innovation efforts is an

undifferentiated commodity that can be applied by all firms.

As discussed in Section 6.1.3, the operationalization of R&D success in this frame-

work means that investments in R&D programs do not guarantee specific technologi-

cal outcomes.17 Additionally, this probabilistic framework differentiates between the

benefits of advanced technologies and the benefits of the R&D that acts on these

energy technologies.18

For the R&D investment uncertainty, the outcome of program efforts is an endoge-

nous function of investment. R&D influences the probability of success for individual

15Allocation decisions are analogous to choices about how to distribute wealth across a portfolio
of financial instruments.

16The hypothetical optimizer has a narrow definition of social welfare. In this context, welfare
impacts only account for costs that accrue directly to firms in the electric power sector. This
characterization likely biases the benefits of R&D downward.

17Other R&D analyses often assume that technological progress has “a strictly positive welfare
impact” (Blanford, 2005). Here, R&D success always has a positive cost impact in expectation but
not necessarily in every state of the world. For instance, if a successful R&D program shifts the
distribution of nuclear capital costs to the left, this optimism about the future of nuclear may lead
to hedging behavior that increases anticipated investments in these units. However, high capital
costs may obtain, which could leave the decision-maker worse off than in the scenario without these
investments. Thus, R&D fundamentally changes expectations about future technological states and
typically improves welfare but not in every possible state.

18This relationship suggests that the benefits of R&D success do not continue in perpetuity, which
is often neglected in the evaluation of actual research programs (National Research Council, 2007;
Cohen and Noll, 1991).
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programs. The R&D strategist can influence the likelihood of success by adjusting

investment levels. In this framework, uncertain returns to investment are captured

through the innovation production function (Blanford, 2009). This function is a prob-

abilistic mapping from R&D investment decisions to technological outcomes and is

everywhere nonnegative. The key characteristic of the innovation production function

is that it exhibits decreasing returns to scale, which means the relationship between

R&D investment and probability of success is concave. This functional form does

not necessarily imply decreasing returns between investment and value of success,

since the value of technological success may be nonlinear and may exhibit increas-

ing returns. The shape of the innovation production function depends on a host of

program-specific factors like existing knowledge about the underlying phenomenon,

extent of previous research, and potential for technological improvement.

Although the model provides an internally consistent method for translating tech-

nological developments into monetary benefits, the valuation of outcomes only cap-

tures the impact of R&D on the US electric power sector. The true value of techno-

logical developments is likely influenced by many economic factors not accounted for

in the model:19

• More extensive microeconomic and macroeconomic effects (e.g., consumer sur-

plus gains from lower energy prices; spillovers and benefits to other areas of the

energy sector)

• Induced technical change (e.g., learning-by-doing effects)

• International spillovers

• Risk aversion

• Possibility for basic research breakthroughs

• Additional inertia caused by capital stock turnover

19The noneconomic impacts of R&D are not captured in this simplified model. Spillover effects are
difficult to conceptualize, let alone to quantify. Additionally, the model ignores the many other com-
plex incentives that exist in this heavily regulated industry, which may be mollified or exacerbated
by R&D.



www.manaraa.com

CHAPTER 6. R&D PORTFOLIO MANAGEMENT 146

• General equilibrium effects (e.g., crowding out of other R&D activities or dis-

tortionary effects of taxes)20

• Cost-benefit setting

Although the effect of incorporating some of these characteristics into the model

is ambiguous, the omission of these effects on the whole likely biases the model’s

allocation levels downward.

The primary model output is the composition of the R&D investment portfolio.

Although the model results suggest the optimal extent of investment, the limitations

above indicate that greater emphasis should be placed on the distribution of in-

vestment under different budget constraints and conditions of uncertainty. Although

recommendations for the total level of R&D allocation are likely underestimates (per-

haps severely so), the benefits of some of the successful research programs suggested

here are larger than current public expenditures on R&D. Instead of being viewed as

the optimal level of investment, the total magnitude of R&D expenditures from this

model can be interpreted as a credible lower bound on the value of R&D.21

6.2.2 Model Formulation

These assumptions are embedded in the R&D portfolio optimization model, which

determines the optimal level of R&D investment in individual technological programs

subject to a possible budget constraint. Notation for the mathematical representation

of this problems is:

20Although the model’s partial equilibrium framework cannot capture crowding out effects, such
costs could be incorporated into the innovation production functions.

21Much like forecasts in the 1986 NASA/WMO assessments for ozone depletion (Parson, 2003),
these values may constrain the bargaining range for policy proposals.
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Notation

n number of R&D programs

α R&D investment allocation vector; α = {α1, . . . , αn}
�θ random variable for the R&D program state

θ ∈ Θ R&D program outcome

θ0 baseline technological state with no R&D success

�ω random variable for market conditions

ω ∈ Ω market outcome

p(α) probability density function with multiple technologies

pi innovation production function for program i; p� > 0, p�� < 0

S(θ) set of technologies with R&D successes for outcome θ

B budget

V (θ,ω) present value of R&D success

Investments can be allocated across a range of technological R&D programs, and

decision variables in this allocation vector α are continuous in the model. Definitions

for the individual R&D programs included in the model are found in Section 6.2.3.

The function V (θ,ω) determines the value of R&D success using a stochastic dif-

fusion model. This stochastic optimization framework utilizes the two-stage capacity

planning and dispatch model from Chapter 3 and adopts the cost-minimizing ob-

jective of utilities and generators. The model is unique in its ability to represent

the uncertain process of diffusion explicitly. This capability is important in decision

contexts with irreducible elements of risk, which require decisions to be made before

uncertainty is resolved.22

The R&D program outcome θ can be thought of as a set of parameters for the

joint distribution over the second-stage technological state. The state of the world ω

represents the realization of all uncertainties that are exogenous to the technological

state (e.g., climate policy stringency). Each R&D program has two possible outcomes,

which gives rise to a technological baseline distribution when the program fails and

22In order to reduce the dimensionality of the optimization problem, the only exogenous market
uncertainties considered in this chapter are the carbon tax stringency, natural gas prices, and public
acceptance of CO2 storage, which were found to be the most significant uncertainties in Chapter 4.
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to an enhanced R&D distribution when the program is successful. Thus, the outcome

space for �θ has a total of 2n elements. S(θ) can be conceptualized as the production-

possibility set associated with R&D program outcome θ so that, in the advanced

technological state θ�, S(θ0) ⊂ S(θ�).

General Optimization Problem

The R&D portfolio manager’s objective is to maximize the expected net benefit (i.e.,

gross benefits less expenditures) of investments subject to a budget constraint. This

net benefit is equal to the expected discounted value under a range of economic, policy,

and technological scenarios. Assuming risk neutrality, the technology strategist’s

optimization problem is:

max
α

E
�
V (�θ, �ω)

�
−

n�

i=1

αi (6.1)

s.t.
n�

i=1

αi ≤ B, αi ≥ 0 (6.2)

Incorporating the probability density function p(α; θ) explicitly (for each R&D pro-

gram outcome θ with allocation vector α) expands the first term in Equation 6.1:

E
�
V (�θ, �ω)

�
=

�

θ∈Θ
p(α; θ)E [V (θ, �ω)] (6.3)

If λB is the shadow price on the budget constraint, the first-order conditions for

this problem become:

�

θ∈Θ

∂p

∂α
(α; θ)E [V (θ, �ω)] = 1 + λB (6.4)

λB

�
n�

i=1

αi − B

�
= 0 (6.5)

where the first equation represents stationarity and the second represents complemen-

tary slackness. The left-hand side of Equation 6.4 can be viewed as the benefit of a
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marginal dollar of R&D investment (i.e., the marginal increase in the expected future

welfare via an incremental change in investment). The right-hand side of Equation 6.4

expresses the opportunity cost of investment.

Quantifying the Expected Value of Success

There are a few approaches to quantifying the expected value of R&D program success

E[V (θ, �ω)] given an outcome θ. Assuming the objective function f(·) maps decisions

to costs, the wait-and-see approach (as used in Blanford (2009); Anadon et al. (2011);

and other uncertainty propagation frameworks) quantifies the success valuation as:

E [Vws(θ, �ω)] = Eω

�
min
x

f(x; θ0,ω)
�
− Eω

�
min
x

f(x; θ,ω)
�

(6.6)

The here-and-now approach (as used here) quantifies the success valuation as:

E [V ∗(θ, �ω)] = min
x

Eωf(x; θ0,ω)−min
x

Eωf(x; θ,ω) (6.7)

The stochastic value function V ∗(θ, �ω) comes from the two-stage stochastic program-

ming model described in Chapter 3. The model is characterized by its sequential

decision-making structure and dependence on energy system inertia.23

Single Technology Case

Given an outcome space with two elements (i.e., for the baseline technological state

and R&D success state), p(α) is the probability of the single program’s success. The

first-order condition in Equation 6.4 becomes:

∂p

∂α
=

1 + λB

E[V (θ�, �ω)] (6.8)

where θ� represents the advanced technological (success) state for the R&D program.

23This trait is a key benefit of using a detailed, bottom-up capacity expansion model. It represents
existing assets, capital vintaging, expansion constraints based on existing pipeline projects and
resources, as well as a range of available technologies.
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These conditions offer insights about the R&D investment problem. As described

in Blanford (2006), the optimal R&D investment level occurs when the marginal prob-

ability ∂p
∂α ≡ pα equals the threshold quantity on the right-hand side of Equation 6.8

when pα is strictly decreasing. In the case where the marginal probability is less

than the threshold at α = 0, the program should not be funded. In the case where

the marginal probability exceeds the threshold at α = B with λB = 0, the budget

constraint is binding, and the optimal solution is to invest the entire budget in the

program.24 Otherwise, an interior solution for α∗ exists.

The value of the left-hand side depends on characteristics of the innovation pro-

duction function. The shape of this function (and consequently of the marginal prob-

ability curve) depends on characteristics of the R&D program and how amenable the

technology is to development. In contrast, the right-hand side threshold value de-

pends primarily on deployment-related factors of the technology and of the markets

into which it will diffuse. Ultimately, the optimal investment in a specific R&D pro-

gram balances the expected market value of the program’s success with the program’s

likelihood of success conditional on R&D expenditures.

Portfolio Analysis

If programs are independent, the portfolio optimization problem reduces to the in-

dividual technology case, and the problems can be solved in isolation to develop

unilateral strategies for each R&D program. However, most R&D decision contexts

cannot be modeled under this assumption due to:

1. Market Competition: Interactions between complementary and substitute tech-

nologies in the energy marketplace influence the value of R&D success of specific

technological programs.

2. Spillovers : Innovation production functions may be correlated, which influences

the probability of success for R&D programs.

24The shadow price should rise such that pα(B) equals the right-hand side threshold. In cases
where the budget constraint is binding, λB decreases in B.
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This work focuses on program interactions to capture diffusion-related uncertain-

ties and not on spillovers, which is an important area for future research. For the case

without spillovers, the probability density function with multiple technologies is:25

f(α; θ) =
n�

i=1

�
1{i∈S(θ)}pi(αi) + 1{i/∈S(θ)}(1− pi(αi))

�
(6.9)

where the left-hand side represents the probability of technological outcome θ, and

the right-hand side terms represent the possibility that program i succeeds in outcome

θ and fails, respectively.

The optimality conditions can be expressed as:

�

θ∈Θ

∂pi
∂αi

(αi; θ)E [V (θ, �ω)] = 1 + λB ∀i (6.10)

λB

�
n�

i=1

αi − B

�
= 0 (6.11)

These conditions comprise a system of simultaneous equations. Since the valua-

tion of R&D success is dependent on the outcomes of complementary and substitute

technologies and consequently investment across other R&D programs, this system

of equations must be solved simultaneously to develop the optimal portfolio. This

system equates the success probability of the marginal investment across R&D pro-

grams for all technologies, which means that the portfolio optimality conditions equate

marginal productivity across all program investments.

6.2.3 Specification and Data

The four energy technology R&D programs incorporated in this research reflect the

focus on the electric power sector. This concentration is motivated by the industry’s

status as the largest greenhouse gas emitter in the US economy and its low R&D

intensity. Although these four programs do not cover the full portfolio of potential

R&D projects, they are broadly representative of different mechanisms for reducing

25The innovation production function decomposition for program i is expressed as pi(αi).
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the emissions intensity of production in the electric power sector.26

1. Natural gas turbine efficiency (GAS): Improvements in the first-law effi-

ciencies of fossil-based units, particularly for natural gas, can take many forms,

including improvements to existing configurations (e.g., more efficient combus-

tion or the introduction of high-temperature materials) or the diversification

into new architectures (e.g., fuel cell and gas turbine hybrid systems). No

matter the manifestation, such advances increase the production from a given

exergetic input. The associated reduction in emissions per unit output makes

it more attractive to construct and/or operate these units even under moderate

climate policy conditions.

2. Carbon capture and sequestration (CCS): The CCS family of technologies

interacts with other fossil-based assets.27 The CCS R&D program considered

here includes both coal and natural gas with capture systems and assumes

perfect spillovers between programs. Unlike its fossil-based counterparts with

capture, CCS technologies likely cannot be profitability deployed in a policy en-

vironment without a carbon price. However, unlike renewables, the profitability

of CCS also is threatened under an extremely stringent climate policy regime,

as discussed in Chapter 4. Thus, the diffusion of CCS and the impacts of its

R&D outcomes are sensitive to the climate policy uncertainty.

3. Nuclear (NUC): Like renewables, nuclear power is a low-carbon technology.

For this reason, nuclear R&D programs that reduce capital costs are most valu-

able under stringent climate policy conditions. However, due to its low fuel cost

volatility relative to fossil-based units, nuclear can be economically competitive

even without a price on carbon, as suggested by its prominent role as a hedging

technology in Chapter 4.

26The model structure and selected programs implicitly assume that technical and cost advances
improve known technologies. Such incremental technological change has historically driven innova-
tive activity in this sector (Alic, Mowery, and Rubin, 2003).

27Generally, CCS technological developments may reduce capital costs, decrease parasitic energy
losses from capture equipment, or provide cheaper transportation and geologic storage. Here, R&D
programs focus only on capital cost reductions.
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4. Solar (SOL): Although many renewable technologies may gain larger market

shares in the coming decades (e.g., solar PV and thermal, wind, biomass, fuel

cells, geothermal), the R&D work here includes only utility-scale solar. The

R&D program is intended to reduce the capital cost of the technology per unit

output. A success in this program may potentially lead to increased deployment

even in the absence of a climate policy; however, solar’s greatest comparative

advantage occurs when climate policy targets are most stringent.

Due to the structure of the expert elicitations underlying values in the model, R&D

activities influence cost parameters of the CCS, nuclear, and solar technologies but

affect the performance of gas-turbine-based technologies.

As described in Chapter 3.4, technological outcomes are characterized through

discrete distributions based on expert elicitations for individual energy technologies.

Uncertainties for coal with CCS, gas with CCS, nuclear, and solar are incorporated

in the model as distributions over investment costs. These distributions come from

expert elicitations conducted at the Harvard Kennedy School (Anadon et al., 2011).

The natural gas combined cycle efficiency uncertainty comes from the elicitations

described in Chapter 3.4 and Appendix B.

Like Blanford (2009), the specific form for the innovation production function of

R&D program i is a bounded exponential:

pi(αi; ρi, βi) = ρi
�
1− e−

αi
βi

�
(6.12)

where 0 < ρi < 1 and βi > 0. This form satisfies the decreasing returns to scale

assumption (∂
2pi
∂α2

i
< 0) so that the marginal probability is strictly decreasing in own-

program investments. Additionally, pi(0) = 0 and limαi→∞ pi(αi) = ρi < 1, which

makes the bounded exponential form feasible for a probability mapping. The pa-

rameter ρi represents the asymptotic limit of the success probability for a program

as R&D investment increases. The parameter βi scales the innovation production

function and determines the rate at which the probability of success approaches its

limiting value ρi.
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Although this functional form is based on Blanford (2006), the parameterizations

for ρi and βi used here come from actual expert elicitations instead of ad-hoc es-

timates. These program-specific values are outputs of elicitation-based analyses on

CCS (Baker, Chon, and Keisler, 2009b), nuclear (Baker, Chon, and Keisler, 2008),

and solar (Baker, Chon, and Keisler, 2009a).28 Figure 6.5 shows the resulting inno-

vation production functions from the nonlinear least squares analysis.
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Figure 6.5: Innovation production functions for the natural gas (GAS), carbon capture
(CCS), nuclear (NUC), and solar (SOL) R&D programs.

6.3 Results

6.3.1 Valuation of Program Outcomes

This section explores the expected value of R&D program successes before determin-

ing optimal portfolio investments. The two-stage stochastic programming model was

28Outputs from these papers show how the probability of success changes as a function of R&D
investment. It is important to note that the conceptualization of success used in the Baker papers
differs from the one used here. This difference suggests that future elicitation and analysis work
should consider how to improve parameterizations of innovation production functions under alternate
conceptions of R&D success.
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run for all 2n = 16 possible combinations of program successes and failures under

uncertainties in the carbon tax stringency, natural gas prices, and public acceptance

of carbon dioxide (CO2) storage. As described in Section 6.2.2, the expected value

of a specific technological outcome is defined as the difference between the expected

cost in that particular scenario and the baseline technological scenario.
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Figure 6.6: Expected value of R&D program success (billion $) decomposed by the
outcome of the climate policy uncertainty.

Figure 6.6 shows the value of success conditional on the outcome of the climate

policy uncertainty.29 The top of the figure shows values when the R&D programs are

considered individually, and the bottom cluster represents the joint value when all

programs succeed. In general, the expected value of R&D is extremely sensitive to the

stringency of climate policy, which makes explicit consideration of this uncertainty

important given how its future state cannot be known when R&D decisions are made.

29These results are conditioned both on the stochastic model and on the description of research
success from the elitications. As pointed out by Blanford (2009), these values would be considerably
higher if the alternative to program success were that the technology is never available. Although
this effect can be captured in this framework, the elicitations do not indicate that it is likely for any
of the technologies considered here.
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For the gas and CCS programs, R&D successes are most valuable under moderate

carbon taxes due to the fact that they permit greater generation and deployment

from lower-cost fossil units. However, the $80/Mt-CO2e carbon tax is sufficiently

stringent to deter investments in fossil units under many scenarios. For the low-carbon

programs (i.e., nuclear and solar), the R&D value increases in the realized carbon tax.

When these carbon tax scenarios are weighted by their respective probabilities, the

nuclear R&D program has the highest value of success due to its optionality and

lower carbon intensity. Nuclear’s high expected value of R&D success reflects its

broader base for diffusion under a range of market conditions compared with other

technologies, which are only competitive in more limited domains.

Another conclusion is that the expected value of R&D success is slightly sub-

additive (i.e., the value of the joint scenario is less than the sum of the individual

successes). On one hand, the complementary interaction between the gas and CCS

programs makes their value of R&D success superadditive. On the other hand, sub-

stitution effects between low-carbon technologies in the marketplace slightly outweigh

this effect and lead to a net subadditive value of success for all of the programs.

6.3.2 Optimal R&D Portfolio Investments

Using the R&D decision model and innovation production functions described in Sec-

tion 6.2, the valuations of R&D outcomes in the previous section can be used to con-

struct optimal portfolio investments. Figure 6.7 compares R&D program allocations

when decisions are made for programs individually and when the optimal portfolio is

chosen.30 Analyzing individually optimal R&D investments (Equation 6.8) can iden-

tify the influence of the innovation production function on allocation decisions without

considering program interactions or spillovers. On the other hand, optimal portfolio

allocation levels incorporate competition between R&D technological outcomes in the

marketplace (Equation 6.10).

30R&D investments in Figure 6.7 are shown on an annual basis for the assumed ten-year durations
of the programs.
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Figure 6.7: Comparison of R&D allocation (million $) across programs under indi-
vidual and optimal portfolio compositions.

Figure 6.7 suggests that optimal allocation levels are similar when R&D programs

are considered individually or jointly. Portfolio investments in programs are typically

lower due to market competition when programs are successful. Investments in the

gas efficiency program increase in the joint portfolio case due to the complementarity

between gas and CCS R&D successes, as efficiency improvements in the base natural

gas combined cycle design improve the efficiency of CCS-equipped units as well.

The highest recommended investments are for the nuclear R&D program, as al-

locations for nuclear exceed all other programs combined. Despite its low success

probability for small investments, the nuclear program has highest limiting probabil-

ity for large investments and the largest value of success across a range of scenarios.

Although solar has high value of success and high marginal returns for early invest-

ments (i.e., a β parameter that is consistent with a lower degree of initial difficulty),

it also has a smaller limiting probability, which discourages greater investment. This

result underscores the importance of the ρ parameter in the innovation production
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function, which can be interpreted as a proxy for the level of confidence that large

R&D investments will result in a favorable outcome.

In many contexts, budget constraints are binding for R&D portfolio allocation

decisions. Figure 6.8 demonstrates how the optimal portfolio composition changes as

the annual R&D budget decreases. As the budget tightens, the portfolio composition

gradually becomes less diverse, with nuclear and solar investments crowding out gas

and CCS. The high success valuations for the nuclear and solar programs are comple-

mented by their favorable R&D program characteristics, as the nuclear program has

a high limiting success probability (due to ρ in the innovation production function)

and solar has high marginal returns for initial investments (due to β).

The homogeneity of the portfolio composition across a range of assumptions high-

lights the importance of the structure of the R&D valuation model. This conclusion

is reinforced by the large share of nuclear, which occurs in spite of the comparatively

unfavorable returns for initial program investments.

0 200 400 600 800 1,000 1,200 1,400 1,600 

No Budget 

$500 M 

$250 M 
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GAS CCS NUC SOL 

Figure 6.8: Optimal portfolio composition under different budgets.

It can be shown through comparative statics that stronger complementarity be-

tween programs leads to more evenly distributed allocations, whereas stronger sub-

stitutability leads to a larger share of the dominant technology (Blanford, 2006).
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However, it is important to note that the portfolio composition is never completely

one-sided, even under the restrictive budget constraints. Portfolio diversification in

this setting is not motivated by risk aversion, as in portfolios of financial securities

(Markowitz, 1952), but by a combination of other factors in the risk-neutral technol-

ogy strategist’s optimization problem (Blanford, 2009):

• Decreasing returns to scale: The marginal productivity of an R&D program

decreases in investment. Due to the optimality condition of equal marginal

returns across investment alternatives, R&D expenditures are likely to be moved

toward programs that offer the highest marginal returns. Thus, it is unlikely

that a single program will dominate the portfolio, as investments are spread to

exploit the most productive range for each program.

• Uncertainty: Diversification can reduce risk under conditions of simultaneous

uncertainty in program outcomes and exogenous market conditions. This risk

management function of diversification provides insurance against the possibil-

ity that an individual program does not resolve as expected.

• Heterogenous diffusion markets: Portfolio diversification may occur in sit-

uations with many applications and diverse markets for energy technologies

associated with R&D investments.

6.3.3 Valuation in Alternate Decision-Making Contexts

As discussed in Section 6.1.4, standard models value R&D using the wait-and-see

(i.e., perfect information) approach, which assumes that uncertainty about market

conditions is resolved at the beginning of the time horizon. One contribution of this

work is to incorporate uncertainty about these conditions explicitly in the planning

process. A third approach is to replace the stochastic parameters by their expected

values and to plan according to the resulting deterministic problem (i.e., the expected-

value approach). This section compares the expected value of R&D success under

these three alternate decision-making contexts.
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As shown in Appendix C, a related theoretical result is that the effect of the

decision-making approach on R&D valuation is equivocal. One implication is that

modeling efforts using a sequential decision-making framework are important to re-

duce the ambiguity of this effect in a particular setting. Since wait-and-see approaches

are typically used for R&D valuation in the literature (Anadon et al., 2011; Blanford,

2009), the conclusion here underscores the importance of understanding the limi-

tations of results from models with simplified treatments of uncertainty. In other

words, such models do not necessarily provide upper bounds on R&D values, since

the bias introduced by adopting a wait-and-see approach can be upward or downward

depending on characteristics of the model.
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Figure 6.9: Comparison of expected R&D success valuations (billion $) under alter-
nate decision-making approaches.

For the numerical simulations here, the most surprising result is that the R&D

success value is largest under the expected-value approach in three of the five cases,

as shown in Figure 6.9. Recall that the Chapter 4 results suggest that, relative to the

other decision contexts, planning under the expected-value approach neglects many
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contingencies and gives rise to greater stranded investments once uncertainties are

resolved. When R&D programs are successful, the expected-value strategy mobi-

lizes and deploys technologies at lower costs in the second stage. The reason for

the greater R&D value in the expected-value context is that suboptimal first-stage

decisions lead to the eventual decommissioning of some of these units under certain

scenarios once information is available about fuel prices and the policy environment.

When substantial construction occurs to replace these assets, R&D has lowered costs

for advanced technologies. Thus, the benefits of R&D are larger under these sce-

narios for suboptimal decision-making approaches compared with here-and-now and

wait-and-see approaches, where robust planning precludes the need for substantial

corrective actions in the second stage.31 This conclusion is particularly relevant given

that utility resource planning currently relies on relatively simple approaches for un-

certainty analysis and does not model uncertainty explicitly (i.e., using sequential

decision-making frameworks), as described in Chapter 3.4.

The primary takeaway is that R&D can be more valuable in second-best planning

environments. Previous research indicates that R&D is more valuable in second-

best climate policy environments (Baker and Solak, 2013), but the research here

indicates that R&D may also exhibit greater value in another type of suboptimal

setting—namely, contexts in which capacity planning decisions are made using an

expected-value approach to decision-making under uncertainty. R&D investments

act as insurance against suboptimal decisions, assuaging their negative cost impacts.

Comparing the stochastic and wait-and-see approaches in Figure 6.9 suggests that

the perfect information approach yields a higher expected value of R&D success for

many of the technologies. In these cases, the wait-and-see approach makes greater

capacity investments in the second stage than the stochastic approach, which can take

advantage of the reduced capital costs made possible by R&D successes. In contrast,

the value of a nuclear R&D success is larger under the stochastic planning approach

31One caveat with this conclusion is that the runs assume that second-stage decisions adjust to
updated information and make optimal investments accordingly. However, the same conditions that
gave rise to suboptimal decision-making in the first stage may hinder the firm’s ability to properly
consider the best-available information and to make informed decisions in later stages as well.
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due to its prominent role as a hedging technology.32 The larger expected value of R&D

success for the stochastic approach occurs primarily for low realizations of the carbon

price uncertainty. This expanded rollout of hedging capacity would not have otherwise

been built if perfect information were available about carbon policy. Overall, this

comparison indicates that traditional, wait-and-see R&D valuation approaches likely

overestimate the expected value of R&D success but undervalue the optionality and

hedging potential of technologies like nuclear relative to the here-and-now approach.

6.3.4 Alternate Investment Environments

The results in earlier sections assume that exogenous market uncertainties like future

climate policies and natural gas prices are not known when R&D portfolio decisions

are made. This section investigates how R&D portfolio allocations would change in

various investment environments if the second-stage conditions were known ex ante.

Figure 6.10 shows heatmaps of optimal annual R&D investments for all four programs

decomposed by the realized climate policy and natural gas price.

For the gas efficiency program, the optimal R&D investment is heavily influenced

by natural gas prices. When gas prices are low, substantial R&D is justified due to the

lucrative market environment for gas units regardless of the climate policy stringency,

since CCS can be employed with gas if the carbon tax is high. When gas prices are

high (or modest but with higher carbon taxes), market opportunities for natural gas

become scarce, which justifies reallocating R&D funds into other programs if this

outcome is known ex ante.

The highest investments in CCS occur under moderate carbon taxes. Allocations

are asymmetric on either side of this value, as some investment is warranted under the

most stringent policy but avoiding investment is optimal for the no-policy scenario.

That greater investment occurs when natural gas prices are high is a reflection of in-

creased market opportunities for deploying new coal units with CCS or for retrofitting

existing coal facilities.33

32The expectation of lower capital costs makes nuclear an even more attractive hedging option,
as an additional 13 GW of new construction begins before 2025 under the enhanced R&D scenario.

33The CCS R&D investment under the no-policy scenario with high gas prices reflects the end
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Figure 6.10: Optimal annual R&D investment (million $) for each technology decom-
posed by the second-stage climate policy and natural gas price growth rate.

Investments in the nuclear R&D program are considerably higher than for other

technological programs under all scenarios. R&D success for this program even has

substantial value in the scenario with the least favorable market conditions (i.e., no

carbon tax with low natural gas prices), since nuclear capital costs with successful

R&D can ensure deployment even without a carbon tax.

Like CCS, market applications for solar are largest with a nonzero carbon tax.

The elicitations indicate pessimism about potential cost reductions from utility-scale

effect of retrofitting coal plants with CCS that would otherwise retire during last decade during time
horizon. In the model, it is cheaper to retrofit these older units to extend their operating lifetimes
rather than to retire and build completely new facilities.
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solar in the next few decades.34 Like nuclear, solar investments are less sensitive to

gas prices, except when the carbon tax is low.

The box plots in Figure 6.11 for abatement costs (left) and emissions (right)

compares the baseline and R&D scenarios under three different climate policy strin-

gencies. If the policy environment involves a stringent carbon tax, R&D has larger

impact on abatement costs and an almost negligible effect on annual emissions. On

the other hand, if the policy environment favors lower abatement effort, R&D has a

more appreciable impact on emissions and a smaller effect on abatement cost. These

trends will be important determinants of illustrating how R&D is more important in

second-best policy environments in Section 6.3.5.
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Figure 6.11: Box plots of annual abatement cost (left) and emissions (right) com-
paring the baseline technology case without R&D (“None”) and the R&D success
case (“R&D”). Each plus sign represents one scenario of the 7,290 possible outcomes.
Abatement costs represent annual differences from the reference case without climate
policy and all other parameters held at their mean values (e.g., allowing for negative
values when gas prices or technological costs are lower than the mean value).

34Given the rapid nature of solar developments, these elicitation results must be tempered by an
understanding that the cost elicitations are likely outdated and biased upward. Appendix B discusses
best practices for expert elicitations and potential biases in existing probabilistic assessments for
energy technologies.
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One function of R&D is to lower the cost risk associated with climate policy

compliance costs. Figure 6.11 suggests that R&D investments provide some degree of

risk reduction for cost outcomes, especially for moderate to high carbon taxes. This

result recasts the R&D portfolio strategy as a risk management problem.

6.3.5 Suboptimal Climate Policies and R&D Investments

Thus far, the results assume that the benefits of R&D include only direct financial

gains for utilities and that the R&D manager makes expenditures that are equal

to the recommendations from the model. This section relaxes these assumptions

and incorporates the social cost of carbon into the ledger of R&D benefits and then

explores the welfare impacts of R&D overinvestment and underinvestment. These

analyses answer questions like: What happens when either climate policies or R&D

spending are suboptimal? How are program performance and net benefits impacted?

R&D and the Social Cost of Carbon

The earlier results examined the expected value of R&D success without accounting

for damages from greenhouse gas emissions.35 This section explores how these results

would change if the so-called social cost of carbon were included in the analysis as

additional costs after model runs. The social cost of carbon is uncertain and sub-

ject to many assumptions about amplifying feedbacks (e.g., thawing of vast deposits

of frozen methane), catastrophic impacts (e.g., slowdown or shutdown of Atlantic

Meridional Overturning Circulation), and economic parameters (e.g., social rate of

time preference). Therefore, the expected value of R&D is calculated for a range of

potential values for the social cost of carbon.

35As mentioned in Chapter 3.2, the decision-makers in this formulation are utilities and generators.
Their optimization problem minimizes private system costs without accounting for social costs. They
only consider climate policy targets to be uncertain, even though this policy may not fully internalize
the externalities associated with greenhouse gas emissions.
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Figure 6.12: Expected value of R&D success (billion $) for all technologies under
various social costs of carbon in 2010 and annual growth rates.

Figure 6.12 shows equipotential curves for the expected value of R&D success for

all programs at various values for the social cost of carbon in 2010 and annual growth

rates over time. The value from Section 6.3.1 of $109 billion (where the social costs

of carbon are excluded) is shown at the origin. Including climate damages makes

R&D successes more valuable, since R&D helps to mobilize low-carbon technologies

that would not otherwise be cost-competitive when policy is less stringent than the

socially optimal level.

These results mirror those in Section 6.3.4. Although R&D spending may be

valuable as means to correct technological market failures like appropriability, it is a

fortiori valuable for its ability to ameliorate a negative environmental externality that

has not been properly internalized. Baker and Solak (2013) also conclude that R&D

is more valuable in second-best policy environments but is referring to second-best

policies involving supererogatory abatement. Here, the results suggest that a similar
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rationale holds for the availability of R&D success under a suboptimal policy milieu,

where the carbon tax is less than its socially optimal level. If R&D decisions are

made in a suboptimal policy environment with low abatement, R&D has a smaller

impact on lowering abatement costs but a larger impact on emissions. Utilities’

anticipation of climate legislation (and not its actual realization) drives investments

in R&D for low-carbon technologies. When these programs succeed, some of these

reduced-carbon-intensity generators will be deployed, even when a stringent climate

policy is not implemented. Therefore, the benefits of R&D are higher when the social

cost of emissions is incorporated into the accounting.

Incorporating the social cost of carbon into the R&D valuation makes low-carbon

technologies especially attractive, as Figure 6.13 illustrates. When the social cost

of carbon is $23/Mt-CO2e, solar R&D becomes more valuable than nuclear. As the

social cost of carbon increases, market opportunities for natural gas and CCS erode,

which shifts R&D portfolio allocations toward solar and nuclear.

0 

20 

40 

60 

80 

100 

120 

140 

160 

180 

$0  $10  $20  $30  $40  $50  $60  $70  $80  $90  $100  

Ex
pe

ct
ed

 V
al

ue
 o

f R
&

D
 S

uc
ce

ss
 (b

ill
io

n 
$)

 

Social Cost of Carbon in 2010 ($/Mt-CO2e) 

GAS 

CCS 

NUC 

SOL 

Figure 6.13: Expected value of R&D success (billion $) by technology under various
social costs of carbon in 2010 and annual growth rates.
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Suboptimal R&D Budgets

Thus far, the analysis has assumed that the R&D manager makes expenditures that

are equal to the recommendations from the model. Here, I investigate the welfare

impacts of suboptimal budgets. The optimal unconstrained R&D budget according

to Section 6.3.2 is $1.36 billion annually. Figure 6.14 considers three alternate budget

levels: no R&D, 2x the optimal R&D budget ($2.72 billion), and 4x the optimal

budget ($5.44 billion).
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2x Optimal R&D 
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Figure 6.14: Comparison of expected system costs (billion $) under four R&D budgets.

There is an asymmetrical effect of overinvestment compared with underinvest-

ment, as displayed in Figure 6.14. Overinvestment of a few times the optimal R&D

budget has smaller cost increases relative to the case without any R&D investment,

which echoes the results of Baker and Solak (2013). This asymmetry is caused largely

by the assumption of decreasing marginal returns,36 since the large productivity of

initial R&D investments means that it would be more detrimental to make no expen-

ditures than to make supererogatory R&D investments (up to a point). The degree

of asymmetry depends on shapes of the innovation production functions and R&D

36If the R&D strategist thinks that R&D investments exhibit increasing returns, then the conclu-
sion is flipped.
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success values.

Figure 6.15 suggests that the net benefits from R&D equal zero when total in-

vestment across all programs is $7.63 billion, which is 5.6 times the optimal budget.

The marginal benefits do not cross -$0.9 billion (per billion invested) until annual

investment is $3 billion, which is 2.2 times the optimal budget.
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Figure 6.15: Net and marginal benefits for increasing R&D investments (billion $).

6.3.6 Nuclear Sensitivity

The results in previous sections indicate that nuclear R&D programs are attractive

investments; however, these conclusions depend on the elicited probabilities for nu-

clear technologies. To test the robustness of these results, Figure 6.16 examines how

the value of nuclear R&D success changes if different distributions are used. Given

the wide variation of the expected value of R&D in a fairly small domain, more elic-

itations of how R&D success likely impacts costs for nuclear technologies should be

conducted to verify the anticipated efficacy of the program.
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Figure 6.16: Probability simplex for the nuclear capital cost uncertainty. Gridlines
represent different probabilities (which sum to one) for the cost outcomes of the three-
point distribution. Colors on the simplex indicate the expected value of a nuclear
R&D success given that the program moves the distribution over costs from the “No
R&D” point to another point. The R&D success point used in previous sections is
labeled “Base R&D.”

As discussed in Chapter 4, investments in nuclear are economically attractive

under a diverse range of market conditions due to its low life-cycle greenhouse gas

emissions (which reduces exposure to the climate policy uncertainty) and to its low

fuel price volatility (relative to alternatives like natural gas). However, the stochastic
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capacity planning model used in this research does not incorporate potential so-

ciopolitical concerns or uncertainties surrounding nuclear power. These factors are

inherently challenging to quantify due to the manifold concerns associated with these

technologies (e.g., proliferation, waste disposal, safety) and to risk perceptions that

are shaped by a complex combination of scientific risk assessments, cultural world-

views, and various psychological factors related to putative risk assessment (Kahan,

2012; Morgan et al., 2002; Douglas and Wildavsky, 1982). Incorporating these fea-

tures would add additional risk to nuclear investments.

6.4 Summary and Extensions

This chapter presents a framework for directing investments in an energy technology

R&D portfolio to promote innovation. A novel contribution of this work is to offer

guidance about how R&D success valuations vary in different decision-making settings

under uncertainty. Although theoretical results suggest that the effect of decision-

making approaches on R&D valuation is equivocal, the numerical experiments using

the two-stage stochastic capacity planning model indicate that R&D is more valuable

in second-best planning environments like when decision-makers use expected-value

approaches. These comparisons suggest that traditional, wait-and-see R&D valuation

approaches likely overestimate the value of R&D success for many of the technologies

but undervalue the optionality and hedging potential of technologies like nuclear

relative to the stochastic approach.

The results stress the role of R&D in second-best policy environments. The ex-

pected value of R&D success is modulated by the degree to which environmental

damages are internalized, and expectations about future policy decisions impact R&D

investments in the present. In the presence of lax or nonexistent environmental policy,

investments in R&D for more environmentally benign technologies are likely subopti-

mal. The results reinforce the common normative rationale that public R&D decisions

should account for economic benefits accruing to all impacted stakeholders and not

just to innovating firms.
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A related conclusion is that R&D plays different roles under different policy envi-

ronments, yielding the largest changes in environmental outcomes when abatement is

low and the largest cost reductions when climate policies are stringent. This flexibil-

ity alludes to numerous real options associated with R&D budgeting, as a successful

R&D strategy can assuage downside losses while enabling planners to capitalize on

favorable investment opportunities. The results in this chapter illustrate the use of

R&D as a method of reducing exposure to risk. Despite these dual roles, R&D alone is

an inefficient means for achieving emissions reductions, which underscores the limita-

tions of narrowly targeted policies for correcting environmental externalities and the

significance of complementary policy instruments to incentivize mitigation across a

range of timeframes. The environmental economics literature suggests that, if emis-

sions prices prove not to be politically feasible, costs induced by political barriers

will likely be substantial and that further constraints on available policy alternatives

increase these costs (Fischer and Newell, 2008).

A broad goal of this framework is to assist decision-makers in thinking through

the benefits of long-term, sustained R&D portfolio expenditures and to demonstrate

the value of such programs. Although there are many exogenous uncertainties that

may influence the diffusion of future technologies, judicious R&D spending requires

the careful consideration of plausible scenarios under which these factors will align to

allow for broad market penetration. The probabilistic modeling approach suggested in

this chapter investigates a wide range of scenarios and identifies the conditions under

which R&D successes will be most valuable (while also evaluating the likelihood of

each scenario).

The proposed framework for R&D portfolio management offers a structure and set

of tools for facilitating information gathering and model improvements. It is designed

to offer support for difficult but necessary decisions in a way that makes its underlying

dynamics and assumptions transparent but realistic. This framework can be updated

as better information becomes available and as improved models are created. These

traits are integral to the enterprise of managing technological change, as the charac-

terization of innovation requires expert elicitations and other modeling judgments in

areas where reasonable analysts and stakeholders may disagree. Although the model
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is applied here to a portfolio of energy technology R&D projects, the framework could

be used to manage R&D in other domains like healthcare and national security.

The homogeneity of the optimal portfolio across a range of assumptions under-

scores both the importance of structure of the R&D valuation model and the expert

elicitations. More detailed elicitations could reassess the validity of the innovation

production functions used in the analysis and investigate whether some technologies

exhibit increasing returns across an early investment range, which could be captured

with a logistic function. The one-sidedness of the optimal portfolio should prior-

itize nuclear power elicitations with careful debiasing to avoid overconfidence. The

recommendations of nuclear R&D support are based on relatively optimistic cost pro-

jections and should be tempered by the recognition of the historical overestimation of

demand for nuclear power technologies and underestimation of their costs (Grübler,

2010; Hultman, Koomey, and Kammen, 2007; Koomey and Hultman, 2007; Cohen

and Noll, 1991). On the other hand, this analysis points to the importance of ex-

plicitly considering market uncertainties when assessing R&D benefits, including the

significance of nuclear as a hedging technology.

Potential extensions of this work include incorporating endogenous technical learn-

ing, quantifying spillovers across R&D programs, allowing R&D programs with vari-

able time horizons, experimenting with a valuation model that includes other facets

of the energy sector and a macroeconomic module, and modeling demand-side tech-

nology R&D programs.
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Chapter 7

Fat-Tailed Uncertainty, Learning,

and Climate Policy

“Not only does God definitely play dice, but He sometimes confuses us by throwing

them where they can’t be seen.”

—Stephen Hawking

7.1 Background

Uncertainty is a pervasive feature in climate change economics. Deep structural un-

certainty about the climate system combined with tremendous challenges in quanti-

fying the economic impacts of severe climate change pose many conceptual, method-

ological, and ethical difficulties. In this context, the economic argument for more

stringent near-term mitigation is typically based on reducing exposure to potential

losses from catastrophic outcomes and not on mean-valued analyses from determinis-

tic benefit-cost frameworks. Although insuring against low-probability, high-impact

climate risks has been a leading justification for mitigation for many decades (Manne

and Richels, 1993), recent developments have refocused attention on how fat-tailed

uncertainty, where probabilities of rare events decline relatively slowly in the upper

174
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tail of a distribution,1 may influence the urgency of abatement measures.2

Despite the centrality of risk in climate economics, the recognition of the impor-

tance of uncertainty has outpaced its actual quantification and implementation in

the energy modeling community. Integrated assessment models (IAMs) are predom-

inantly deterministic and focus on expected-value forecasts, using one-way sensitiv-

ities to assess the impact of uncertain or contentious parameters on model outputs.

In the rare instances when uncertainty is more formally incorporated into the anal-

ysis, propagation techniques are typically used with thin-tailed probability density

functions (Nordhaus, 2008; Hope, 2006).3 These approaches offer a limited range of

policy-relevant insights about near-term decisions and do not capture dynamics re-

lated to hedging, optionality, and learning, which come through the explicit inclusion

of uncertainty in sequential decision-making frameworks (Kann and Weyant, 2000).

Weitzman (2009) highlighted these inadequacies regarding the treatment of uncer-

tainty in IAMs and refocused research attention on the implications of extreme out-

comes. Although the strong conclusions of the Dismal Theorem have been criticized

on many fronts,4 the paper has led to a reappraisal of fundamental notions of how to

model (or, more generally, how to conceptualize) uncertainty, risk, discounting, and

welfare in the context of fat-tailed environments with conceivably unlimited down-

side exposure. Despite these valuable contributions in framing the economic analysis

of catastrophic risks and drawing attention to contentious assumptions in conven-

tional models, the practical modeling implications and prescriptive policy guidance

1Fat-tailed distributions are defined here as having probabilities that decline polynomially or
slower, as described in Section 7.2.2.

2The recent interests in the impacts and economics of low-probability, high-impact events, es-
pecially in relation to climate change, are reflected in Weitzman (2009); Frame and Allen (2008);
Sunstein (2007); Taleb (2007); Weitzman (2007); Stern (2007); Parson (2007); Posner (2004).

3Popular choices for representing probability density functions are triangular (Hope, 2006) and
normal (Nordhaus, 2008) distributions, which are frequently discretized. The de-facto practice of
truncating distributions or imposing de-minimis risk thresholds, whether to simplify the computa-
tional complexity of the problem or to avoid assigning probabilities to difficult-to-quantify scenarios,
potentially assumes away important dynamics of the climate system and the economics of climate
change (Roe and Baker, 2007; Tomassini et al., 2007).

4The Dismal Theorem states that, “The catastrophe-insurance aspect of such a fat-tailed
unlimited-exposure situation, which can never be fully learned away, can dominate the social-
discounting aspect, the pure-risk aspect, and the consumption-smoothing aspect” (Weitzman, 2009).
Millner (2013) summarizes and analyzes critiques of the Dismal Theorem.
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for near-term decisions (e.g., how much insurance to buy) are left for future research.

In response, a growing body of literature in the economics of climate change has

examined the impact of fat-tailed uncertainty on optimal abatement and the social

cost of carbon. However, most of these studies investigate the implications of fat-

tailed distributions using uncertainty propagation approaches instead of sequential

decision-making ones. Studies like Dietz (2011); Pycroft et al. (2011); Ackerman,

Stanton, and Bueno (2010); Mastrandrea and Schneider (2004); Tol (2003); Rough-

garden and Schneider (1999) use Monte Carlo analyses to represent uncertainty by

sampling from distributions for uncertain parameters, propagating them through a

deterministic model, and creating output distributions. These approaches implicitly

assume perfect information across the entire time horizon for each simulation run (i.e.,

implying a learn-then-act approach in which the uncertain state is revealed before

decisions are made). This characteristic means that such ex-post approaches, while

analytically simple, cannot offer guidance in determining ex-ante hedging strategies,

which balance the risks of premature action with those of delay given the decision-

maker’s present state of knowledge. Sequential decision-making frameworks incorpo-

rate uncertainty explicitly and address limitations of foresight by determining optimal

policies in multiple stages based on updated information.5 These adaptive approaches

more realistically capture the decision environment for climate policy, where perfect

information is not likely to be available in the immediate future.

The objective of this research is to examine how sequential decision-making frame-

works, concepts, and metrics can be used to inform risk management in climate policy.

Specifically, this work examines the impact of fat-tailed uncertainty about the climate

sensitivity parameter and of the potential for learning on optimal near-term abate-

ment.6 Model experiments answer questions about whether policy recommendations

5Weitzman (2012) implicitly suggests that climate risk should be accounted for in a sequential
decision-making framework rather than through uncertainty propagation, since the Monte Carlo
treatments of uncertainty “very likely fail to account adequately for the implications of large impacts
with small probabilities.”

6For illustrative purposes, this analysis focuses on uncertainty about the climate sensitivity pa-
rameter as an aggregate measure for the climate response to greenhouse gas emissions, which reflects
the parameter’s prominent role in many IAMs and its correlation with climate change effects (Py-
croft et al., 2011). However, the analysis also could introduce uncertainty explicitly for economic
impacts (where deep uncertainty exists) or for climate-related thresholds and feedbacks.
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are robust to the specification of distributions, damages, and discounting.

Unlike Weitzman (2012), this work offers prescriptive policy guidance under fat-

tailed uncertainty beyond the restrictive Dismal Theorem. Criticisms of the limiting

assumptions of the Dismal Theorem (Nordhaus, 2012) suggest that fat tails per se are

not sufficient to lead to an unbounded expected utility but do not provide guidance

for policy selection under fat-tailed uncertainty more generally. Even if the strong

Dismal Theorem conditions proposed by Weitzman do not obtain, the tail obesity of

the climate sensitivity parameter may be appreciable enough to merit consideration

outside of the standard deterministic benefit-cost setting. The modeling framework

in this chapter makes amendments to deterministic IAMs to avoid this policy impasse

by incorporating uncertainty through a sequential decision-making framework.7

Another goal of this research is to quantify the value of learning and midcourse cor-

rections on reducing consumption risks imposed by uncertain damages from climate

change. In the presence of strong stock-accumulation inertias and sunk emissions,

Weitzman (2012) posits that the possibility of learning is irrelevant and that it would

be challenging to change course if the response of the climate system is more severe

than expected.8 Thus, Weitzman (2012) assumes that lags involved in climate sys-

tem preclude the ability to learn about catastrophic impacts until damages arrive

in 150 years. Other authors (Nordhaus, 2012; Kousky et al., 2010; Nordhaus, 2009;

Yohe and Tol, 2007) have criticized Weitzman’s assumptions as being unrealistically

pessimistic and suggest that the pace of climate change will allow for the possibility

of midcourse corrections over time, of deploying negative emissions technologies, or

of using emergency geoengineering if warming is unexpectedly high.9 Despite these

7The analysis strikes a balance between rigor and practical utility by using a simplified stochastic
IAM, which incorporates dynamics of sequential decisions while adopting more stylized climate and
investment dynamics, as discussed in Section 7.2. It offers policy guidance in terms of optimal
abatement instead of willingness to pay (Weitzman, 2012; Pindyck, 2012).

8Weitzman (2012) emphasizes this point by citing the “crude rule of thumb” from Solomon et al.
(2009) that about 70 percent of the peak CO2 enhancement level will persist after a century of no
emissions and 40 percent will remain in the atmosphere after a millennium.

9Although the learning rate is uncertain and dependent on factors like the true value of the
climate sensitivity parameter (Kelly and Tan, 2013), the high likelihood that information will be
available early enough to enable midcourse corrections makes the economic analysis of climate change
amenable to and well-suited for a multi-stage stochastic programming with recourse framework,
which is used here. In this respect, climate change may offer greater potential for learning and
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criticisms, no work has investigated the degree to which assumptions about learning

influence the conclusions of the model in Weitzman (2012). This research investigates

the influence of different learning rates on near-term abatement.

Although previous work has investigated the learning process associated with cli-

mate change (Webster, Jakobovits, and Norton, 2008; Leach, 2007; Yohe, Andronova,

and Schlesinger, 2004; Webster, 2002; Kelly and Kolstad, 1999), nearly all of these

analyses have not explored such issues in the presence of fat-tailed uncertainty. The

limited research conducted on fat-tailed uncertainty using sequential decision-making

frameworks has not compared learning in the context of different priors and often

focuses on the rate of learning. In general, such analyses (Kelly and Tan, 2013;

Gerst, Howarth, and Borsuk, 2010) do not simultaneously test the specifications of

uncertainty, learning, damages, and discounting in a unified framework and make

restrictive assumptions, which limit the generalizability of the results.

A high-level motivation for this work is to investigate to what degree near-term

policy prescriptions in IAMs are robust to conventional assumptions about thin-tailed

probabilities, perfect foresight, and quadratic damages. The following sections de-

scribe the deliberately parsimonious model and experiments that are designed to

isolate these effects and to show how policy guidance from IAMs may rely strongly

on these assumptions in certain domains. The results do not propose specific and

definitive solutions to these complex issues but draw general insights, which are use-

ful starting points in understanding modeling limitations and refocusing research

attention on problems related to uncertainty and learning.

7.2 Model

The model formulation is based on a simplified version of the Dynamic Integrated

Climate-Economy (DICE) model (Nordhaus, 2008) with extensions to account for

midcourse corrections relative to other types of catastrophes (e.g., catalyzed conversion by strangelets
from heavy-ion collisions in high-energy particle accelerators).
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uncertainty through a two-stage sequential decision-making framework.10 For com-

parability, it makes similar parameterization assumptions to the Weitzman (2012)

model. The social planner’s objective is to determine the optimal consumption path

for goods and services and for investments in technologies to reduce greenhouse gas

emissions, which balances the cost of mitigation and damages from climate change.

7.2.1 Economic and Climate Systems

The model finds the optimal path of abatement and consumption to maximize the

expected net present value of discounted utility flows:

max
µ1

� τ

0

e−ρtU(Ct, Lt) dt+ E
�
max
µ2

� ∞

τ

e−ρtU(Ct, Lt) dt

�
(7.1)

The choice of the first-stage control rate (µ1) depends on the uncertain and unob-

servable value of the climate sensitivity parameter, which is not known until time

τ . The control rate represents the aggregate percentage reduction of greenhouse gas

emissions below business-as-usual levels across the decision stage.11 The nonantici-

pativity assumption constrains first-stage decisions to be identical under all possible

states of the world, which makes the optimal control choice a sequential decision

under uncertainty.12

The population of Lt identical agents has preferences over per capita consumption

10The notation in this chapter is independent of other dissertation chapters, so previously used
symbols may have different meanings in this model.

11This control rate is the average value across the duration of the first stage and not the immediate
policy value, as there are many abatement paths consistent with this average rate.

12Hwang, Reynès, and Tol (2011) is one of the only papers claiming to use stochastic program-
ming to examine fat-tailed climate uncertainty. However, since consumption and abatement decision
variables in their model are selected for each state of the world without an additional nonanticipa-
tivity constraint, their mathematical formulation is functionally equivalent to using a wait-and-see
approach. This implicit assumption of perfect information about the true scenario before first-stage
decisions are selected makes it indistinguishable from the expected value of the wait-and-see ap-
proach. Without the possibility of making suboptimal decisions during first stage, this approach
underestimates the impact of uncertainty on optimal policy selection.
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described by the isoelastic (constant relative risk aversion) utility function:

U(Ct, Lt) = Lt

�
Ct
Lt

�1−η
− 1

1− η
(7.2)

The labor supply Lt is assumed to be inelastic and equal to the population. The

population grows exogenously at a rate n until reaching a steady-state asymptotic

maximum L∞.

The optimization problem is subject to the constraint that net output13 (Yt) after

damages (�Ω) at time t is equal to the sum of consumption, capital investment, and

abatement costs:
�ΩYt = Ct + It + Λt (7.3)

Here, the savings rate (σ) is assumed to be an exogenously specified fraction of net

output in time t. Additionally, output grows at an exogenous rate g:

Ẏt

Yt
= g (7.4)

This growth rate can be conceptualized as total factor productivity and is a combi-

nation of capital- and labor-augmenting technical progress.

The convex abatement cost function is defined by the equation:

Λt = Btµ
θ
iYt (7.5)

Economic output is adjusted by the economic loss (i.e., damage) function given

by the formula:

�Ω =

�
1 +

�
T

α

�2

+

�
T

β

�γ
�−1

(7.6)

where T represents the equilibrium change in the global mean surface temperature,

and �Ω is expressed as a fraction of global economic output after accounting for losses

due to climate damages. For larger values of T , climate change negatively impacts

13Net of capital depreciation.
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output in the second stage through this multiplicative factor. Although atmospheric

equilibrium may take many centuries for large temperature changes to materialize,

damages are conceptualized as being linked to the trajectory with this asymptotic

limiting temperature change and are normalized as if they occur after τD years. This

analysis makes the strong assumption that all climate change impacts (i.e., market

and non-market) can be monetized and expressed as a fraction of output.

Given criticisms that quadratic-polynomial damage functions likely understate

welfare impacts for large temperature changes, the results explore impacts of using a

reactive damage function with a parameterization that accounts for the possibility of

more appreciable economic impacts at higher warming levels (i.e., economic damages

are more reactive to higher temperature changes than a quadratic damage function).14

As discussed in Section 7.2.3, the calibrated values for the reactive damage function

come from Weitzman (2012). In Equation 7.6, the rightmost term is equal to zero for

quadratic damages and has an exponent of γ = 6.754 for reactive damages.

The model makes the simplistic assumption that the greenhouse gas concentration

builds to a level G (conditional on abatement choices) in τD years when damages are

suddenly realized. Output is reduced by the fraction �Ω associated with the realization

of the equilibrium temperature conditional on the temporally aggregated stock of

greenhouse gas emissions in the atmosphere.

The forcing factor as a function of the steady-state atmospheric carbon dioxide

(CO2) concentration G (in parts per million by volume) is:

Φ =
ln(G/280)

ln(2)
(7.7)

where the function is normalized so that, at the atmospheric doubling concentration

from the pre-industrial level, Φ(G = 560) ≡ 1. For analytical convenience, the

model uses a simplified mapping between the emissions profile and atmospheric stock

14As pointed out in Weitzman (2012), quadratic damage functions like the one found in DICE are
based on estimates of economic impacts from small temperature changes, which makes extrapolation
questionable for higher temperatures. For instance, the parameterization in DICE leads an 8 percent
reduction in output for a temperature increase of 6 ◦C and a 44 percent loss for a temperature increase
of 18 ◦C.
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of greenhouse gas emissions.15 The steady-state concentration depends on the CO2

retention rate in the atmosphere (φ) and first- and second-stage emissions (µ1 and

µ2, respectively) according to the equation:

G = φG0 + (1− µ1)
τ

τD
Γ+ (1− µ2)

τD − τ

τD
Γ (7.8)

where Γ is the uncontrolled CO2 concentration increase after τD years from DICE-

2010. The steady-state temperature change as a function of the atmospheric CO2

concentration and the equilibrium climate sensitivity parameter S is given by T =

Φ(G)×S. In an extremely simplified sense, global temperature changes from anthro-

pogenically injected CO2 are approximately the product of emissions and an uncertain

climate-sensitivity-like scaling parameter, which is discussed in the following section.

7.2.2 Climate Sensitivity Parameter Distributions

The driving random variable in this analysis is the equilibrium climate sensitivity pa-

rameter (S). The climate sensitivity parameter is defined as the global mean surface

temperature increase resulting from a sustained doubling of atmospheric greenhouse

gas concentrations after the climate has reached a new steady-steady equilibrium.16

This parameter is an aggregate indicator of the climatic response to stocks of anthro-

pogenically injected greenhouse gases.

Like Weitzman (2012), this work treats the climate sensitivity parameter as a

reduced-form representation of the many uncertain dimensions of climate change,

since it is heavily researched and offers greater specificity to the problem. In actuality,

even if the true value of the climate sensitivity were known, there would still be

substantial uncertainty about the response of the Earth system and about spatial

and temporal distributions of localized impacts. Properly treating the uncertainty

15Although these equations offer an enormous simplification of the climate system, the model is
similar to other representations used in climate policy analysis. More complex equations of motion
likely would not alter the qualitative conclusions from this simplified model.

16For this analysis, the climate sensitivity parameter refers to the fast equilibrium value,
which does not incorporate the slower S2 feedbacks (e.g., changes in biological sources or sinks,
temperature-induced greenhouse gas releases, and others) considered in Weitzman (2009).
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associated with a coarse parameter like the climate sensitivity (though critical in

determining an aggregate policy response) does not tell us much about when and

where climate change impacts will be felt, which leaves many residual economic,

policy, and ethical questions.

Table 7.1: Alternate probability distributions for the climate sensitivity parameter.

Distribution Density Function Support Parameters

Normal fN (S;µ, σ) = 1
σ
√
2π
e−

(S−µ)2

2σ2 S ∈ R µ = 3
σ = 1.447

Lognormal fL(S;µ, σ) =
1

Sσ
√
2π
e−

(lnS−µ)2

2σ2 S ∈ (0,+∞) µ = 1.099
σ = 0.3912

Pareto fP(S; π,α) =
απα

Sα+1 S ∈ [π,+∞) π = 2.3758
α = 2.969

The model uses three different distributions based on Weitzman (2012) to rep-

resent various levels of tail obesity, as shown in Table 7.1. Thin-tailed distributions

have probabilities that decline exponentially or faster, which is represented in this

research by the normal distribution. Probabilities in the upper tails of intermediate-

tailed distributions decline slower than exponentially but faster than polynomially,

which is embodied in the lognormal distribution. Fat-tailed distributions are defined

here as having probabilities that decline polynomially or slower, which is represented

by the Pareto distribution.17

The Intergovernmental Panel on Climate Change’s Fourth Assessment Report

states that:

[The equilibrium climate sensitivity] is likely to be in the range 2 ◦C to

4.5 ◦C with a best estimate of about 3 ◦C, and is very unlikely to be less

than 1.5 ◦C. Values substantially higher than 4.5 ◦C cannot be excluded,

but agreement of models with observations is not as good for those values.

17There are many definitions of tail obesity (Cooke, Nieboer, and Misiewicz, 2011), which reflects
the long history of fat tails and leptokurtic distributions in mathematics (Mandelbrot, 1963).
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Although the IPCC does not attach a probability to the climate sensitivity being

greater than 4.5 ◦C (P [S > 4.5 ◦C]), the IPCC defines “likely” elsewhere as a proba-

bility above 66 percent but below 90 percent.18 Weitzman (2012) calibrates the three

distributions so that P [S > 3 ◦C] = 0.5 and P [S > 4.5 ◦C] = 0.15.
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Figure 7.1: Alternate probability density functions for the climate sensitivity param-
eter with various levels of tail obesity.

Although the probabilities of very high climate sensitivity values are small, Fig-

ure 7.1 shows that the relative tail probabilities depend greatly on the specification.19

Thin-tailed distributions essentially exclude the possibility of climate sensitivity val-

ues greater than about 8 ◦C.

18Kunreuther et al. (2012) note that estimates of P [S > 4.5 ◦C] in the literature range from less
than 2 percent to as high as 50 percent. Elicitation results from Zickfield et al. (2010) suggest that
this probability is approximately 23 percent.

19For instance, P [S > 10 ◦C] is 1.4 percent for the Pareto distribution, 0.1 percent for the
lognormal, and 7× 10−7 percent for the normal.
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7.2.3 Calibration

The model adopts a descriptivist approach for selecting the parameters that influence

the discount rate in the Ramsey equation:

rt = ρ+ ηgt (7.9)

The values for the pure rate of time preference (ρ) and elasticity of marginal utility

(η) are inferred from decisions made by democratically elected governments using

mortality rates and personal income tax structures, respectively. These revealed

social values are based on the mean values from Anthoff, Tol, and Yohe (2009) using

data from Evans and Sezer (2005, 2004). The parameter values of ρ = 1.08 percent

and η = 1.49, combined with growth rate of g = 2.1 percent (La Grandville, 2012),

give a discount factor that aligns with a 5 percent rate of time discount.20

The damage function in Equation 7.6 can represent either quadratic or reactive

damages depending on the chosen parameter values. For quadratic damages, the

rightmost term drops out as γ → −∞, and the equation becomes identical to the

damage function found in DICE (Nordhaus, 2008). For reactive damages, the α

parameter is the same, and β = 6.081 and γ = 6.754 are selected to match Weitzman

(2012), which calibrates the damage function so that Ω(T = 6 ◦C) = 0.5. Similarly,

the analysis here adopts Weitzman’s related assumptions that economic damages from

climate change do not materialize for τD = 150 years and that 18 ◦C is taken as an

upper bound on the temperature change from preindustrial levels.21 Ceteris paribus,

these assumptions bias mitigation downward.

The marginal abatement cost curve is calibrated so that optimal first-stage abate-

ment without learning is 0.27 using a normal distribution and quadratic damages,

which is the average control rate until 2105 in DICE-2007.

20The secondary motivation for this choice is to select a comparatively high discount rate so that
model results cannot be attributed primarily to an unreasonably low discount rate. Ultimately, the
descriptivist parameters may not reflect normative social preferences (Kaplow, Moyer, and Weisbach,
2010). Such differences may be critical for policies with long timeframes and deep uncertainty.

21Costello et al. (2010) argue that the equilibrium temperature change should be truncated due
to the physical impossibility of infinite temperatures, which is implemented here with the same
threshold from Weitzman (2012).
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The exogenous savings rate comes from DICE-2010. This rate as a fraction of

net output does not exhibit temporal variation in DICE-2010 and is nearly identical

across different abatement paths.22

The population growth rate (n = 0.01) is from La Grandville (2012), and the

asymptotic population (L∞ = 8.7 billion) comes from DICE-2010.

Table 7.2: Calibrated parameter values for the fat-tailed uncertainty model.

Symbol Parameter Value

τ learning time (years) 150
τD impact time (years) 150
ρ pure rate of time preference 0.0108
η elasticity of marginal utility 1.49
L0 initial population (million) 6,411
L∞ asymptotic population (million) 8,700
n labor force growth rate 0.01
ω savings rate 0.225
g output growth rate 0.021
Bτ cost of backstop abatement technology ($/Mt-C) 1,000
φ atmospheric CO2 retention rate 0.877
G0 atmospheric CO2 concentration at t = 0 (ppmv) 389
Γ uncontrolled CO2 concentration increase by 2155 (ppmv) 699

7.3 Results

7.3.1 Reference Results

In this section, it is assumed that the social planner does not learn the true equi-

librium climate sensitivity parameter until 2150, which corresponds to the reference

assumptions of Weitzman (2012). The model used here calculates the optimal near-

term abatement policy as the output of interest (instead of willingness to pay to avoid

climate change).

22The time invariance of the propensity to consume is similar to Gerst, Howarth, and Borsuk
(2010). This paper cites data from the International Monetary Fund suggesting that the savings
rate has been stable in recent decades.



www.manaraa.com

CHAPTER 7. FAT-TAILED UNCERTAINTY AND LEARNING 187

0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

1 

Deterministic Normal Lognormal Pareto 

O
pt

im
al

 F
irs

t-S
ta

ge
 C

on
tr

ol
 R

at
e,

 µ
1 

Quadratic Reactive 

Figure 7.2: Comparison of optimal first-stage control rates (µ1) under alternate cli-
mate sensitivity parameter distributions and damage functions when τ = 150.

A motivation for this research is to ascertain the degree to which alternate distri-

butions for the climate sensitivity have different implications for optimal abatement.

Figure 7.2 shows that the answer to this question depends strongly on the assumed

damage function. For quadratic damages calibrated to estimates for modest tempera-

ture changes (Nordhaus, 2008), tail thickness does not play a large role in determining

near-term policy due to relatively small consumption losses even at high temperatures.

This result suggests that questions of abatement under quadratic damages belong to a

class of problems with “tail irrelevance,” where the “distribution of the random vari-

able makes no (or little) difference to the policy or the outcome” (Nordhaus, 2012).

This result also gives a sense for why uncertainty analyses with quadratic damages

often conclude that uncertainty does not matter. For instance, using DICE in an

uncertainty propagation analysis with quadratic damages and normal distributions,

Nordhaus (2008) concludes:

Look at the current (2005) social cost of carbon, we see that the mean
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estimate ($26.85 per ton) is slightly less than the most likely estimate

($28.10 per ton). This important finding indicates that the estimates

in the certainty-equivalent model are very close to the estimates in the

uncertainty model.

In contrast, fatter-tailed uncertainty increases abatement relative to the thin-tailed

and deterministic cases when reactive damages are assumed.23 Fat-tailed uncertainty

without learning increases the control rate by 61 percent relative to the determinis-

tic case and 18 percent relative to the normally distributed case. Thus, the results

substantiate the non-robust dependence of the recommended policy action on the

specification of uncertainty (specifically, to the assumed thickness of the upper tail)

and damages. Even within a benefit-cost framework, the results offer similar qualita-

tive conclusions to Weitzman (2012) when the possibility of learning is excluded (i.e.,

τ = τD = 150 years).

To place these first-stage emissions control rates in perspective, the average control

rate for the deterministic DICE-2010 model between 2005 and 2155 is 0.55. This

value falls between the deterministic and normally distributed control rates with

reactive damages in Figure 7.2. When the DICE model is used with the discounting

parameters suggested by the Stern Review (Nordhaus, 2008), the average control

rate over this same period is 0.83, which is comparable to the value from the case

with reactive damages and fat-tailed Pareto uncertainty (0.89). Thus, one reason

why Weitzman suggests that the policy conclusions from the Stern Review may be

“right for the wrong reasons” (Weitzman, 2007) is that the recommended climate

policy stringency is similar between the low-discounting, thin-tailed uncertainty and

moderate-discounting, fat-tailed uncertainty cases. However, this conclusion only

holds when reactive damages are assumed.

23The deterministic case assumes that the climate sensitivity parameter is 3 ◦C with a probability
of one.
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Figure 7.3: Probabilities of equilibrium global surface temperature changes (◦C) under
different climate policies and distributions over the climate sensitivity parameter. The
size of each slice reflects the likelihood of a specified warming outcome.

Figure 7.3 illustrates how climate change risk is strongly influenced by the tar-

get mitigation level and also by the assumed distribution for the climate sensitivity

parameter. This figure uses roulette wheel visualizations (Webster et al., 2012) to

convey the uncertainty associated with future temperature changes and the influence

of abatement decisions on such outcomes. Under the no-policy scenario with a nor-

mally distributed climate sensitivity, there is a 31 percent chance that the global mean

surface temperature will increase by at least 7 ◦C (12.6 ◦F) and a 16 percent chance

that warming will be limited to less than 3 ◦C (5.4 ◦F). For the other distributions,

the no-policy scenario leads to similar probabilities of high temperature increases, but

the fatter-tailed uncertainties lead to smaller probabilities of warming below 4 ◦C.
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The policy cases in the lower two rows show how even comparatively small pol-

icy changes can trim the probabilities associated with large temperature changes

compared with the inaction scenario. Under the climate policy recommended with

quadratic damages, the probabilities associated with significant levels of warming are

reduced for all three distributions. For instance, the probability that temperature

increases are lower than 5 ◦C is greater than 50 percent for all three distributions.

However, there is still an appreciable probability of high temperature increases when

only modest mitigation efforts are undertaken. In contrast, climate policies suggested

under reactive damages illustrate how policy can attenuate deep structural risks, as

the probability of temperature increases above 5 ◦C are under five percent. Thus,

Figure 7.3 conveys how mitigation can function as insurance against economic and

welfare risks imposed by climate change.

7.3.2 Value of the Stochastic Solution

Another motivation for this work is to examine how sequential decision-making frame-

works and metrics, like those developed and used elsewhere in this dissertation, can

inform climate policy. As described in Chapter 3.3.3, the value of the stochastic solu-

tion (VSS) compares the expected utility of the optimal stochastic solution with one

that ignores uncertainty by assuming that the expected-value of a distribution will

be realized and then solving the resulting deterministic problem. The VSS quantifies

the value of explicitly including uncertainty in planning efforts.

Table 7.3 suggests that analyzing uncertainty is important in modeling efforts

and policy design when economic damages associated with temperature increases are

more nonlinear and when the distribution over the climate sensitivity parameter is

asymmetrical.24 As indicated in Weitzman (2012), it is the combination of unknown

climate outcomes and the potential for more severe damages in those states that make

the inclusion of uncertainty important in decision-making.

24Greater emphasis should be placed on relative changes and not on absolute values associated
with the objective function.
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Table 7.3: Objective function value and VSS (trillion $) under various assumptions
about climate sensitivity parameter distributions and damage functions.

Quadratic Reactive
z∗ zd VSS z∗ zd VSS

Normal 1,696 1,696 0 1,686 1,676 10
Lognormal 1,695 1,695 0 1,683 1,666 17
Pareto 1,695 1,695 0 1,681 1,629 52

7.3.3 Learning

The primary objective of this work is to determine the value of learning and mid-

course corrections on reducing consumption risks imposed by uncertain damages from

climate change. This section answers the question of when uncertainty needs to be

resolved to make near-term policies differ from the no-learning scenario described ear-

lier. These experiments illustrate the effects of learning on policy choice using three

possibilities for learning:

• No learning : The true value of the climate sensitivity parameter is not known

for 150 years (τ = τD), which is assumed under the reference conditions in

earlier sections.

• Early learning : Perfect information about the true value of the climate sensitiv-

ity parameter is available before damages arrive (τ < τD = 150), which allows

mitigation decisions to be revised in light of this early learning.

• Perfect information: The perfect information case refers to the scenario where

the decision-maker has immediate access to the true value of the climate sensi-

tivity parameter (τ = 0).

Although no case is entirely realistic, these experiments bound the range of abatement

across possible assumptions about learning.
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Figure 7.4 graphs the first-stage control rate as a function of date when uncertainty

is resolved. The expectation of learning has a significant impact on the optimal near-

term policy. Perfect information at the beginning of the time horizon reduces first-

stage abatement effort by 41–48 percent (depending on the assumed prior) relative to

the condition of uncertainty but no learning.25 This result suggests that Weitzman’s

conclusions (i.e., the non-robustness of policy recommendations to the representation

of uncertainty in IAMs) are non-robust to the model specification of learning.
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Figure 7.4: Optimal first-stage control rates (µ1) under reactive damages and alter-
nate climate sensitivity parameter distributions as a function of the learning date.

Since learning can affect first-stage abatement, these results suggest that IAMs do

not need frictions or learning-by-doing to induce anticipatory actions that differ from

the expected-value solution. Here, learning provides the capacity to reduce regret as-

sociated with early-stage decisions, which is especially beneficial when the true value

of a random variable differs from the expected value. For instance, assuming a lognor-

mal distribution and reactive damages, the average control rate through 2150 when

25These magnitudes are similar to the results from Kelly and Tan (2013).
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learning occurs in next 80 years is 57 percent, which is similar to the literature (e.g.,

the DICE-2010 optimal control rate is about 55 percent). However, without possibility

of learning, the control rate is approximately 80 percent. In the absence of learning,

the planner must insure more during initial stages given that the possibility of mak-

ing midcourse adjustments is excluded. The combination of fat-tailed uncertainty,

reactive damages, and lengthy learning times strengthens inter-stage dependencies

by making second-stage damages more strongly influenced by earlier abatement de-

cisions. In this way, learning can be thought of as reducing the risk premium and

the exigency of precautionary insurance, even though the results demonstrate that at

least some precautionary abatement is warranted across a wide range of assumptions

about uncertainty, learning, damages, and discounting.

A second takeaway from Figure 7.4 is that the choice of climate sensitivity dis-

tribution, provided that uncertainty is incorporated in some form, does not have a

sizable impact when learning is expected in the next century. If information arrives

in a sufficiently short time, the sunk emissions during early periods do not lock in

commitments to warming, and the decision-maker can still adjust emissions flows to

ensure that the atmospheric stock of greenhouse gases does not reach threshold levels

associated with large losses. If learning does not occur in this timeframe, irreversible

stock accumulations make adjustments less effective, and fat-tailed distributions at-

tach increasingly smaller probabilities to minor temperature increases. Although the

actual learning rate of the climate sensitivity will depend on a host of factors including

the true value of the parameter (e.g., since larger values will lead to longer learning

times), Kelly and Tan (2013) suggest that the expected time until complete learning

is about 80 years.26 Ultimately, the policy-relevance of potential fat tails depends on

beliefs about learning and damages.

Finally, learning is relevant no matter what level of tail obesity a planner assumes

as long as uncertainty is incorporated explicitly into the decision problem. This result

is a testament to the policy importance of uncertainty in general and learning in par-

ticular. Figure 7.4 illustrates how wait-and-see (i.e., perfect information) approaches

26Kelly and Tan (2013) show that complete learning may take up to two centuries if the true value
is in the tails, but the potential learning times to rule out fat tails are between 12 and 39 years.
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(Hwang, Reynès, and Tol, 2011) recommend control rates and carbon taxes that are

likely biased downward.

Table 7.4 helps to identify cases where learning impacts near-term policy decisions.

The expectation of early learning only has a significant impact on the optimal first-

stage control rate when the damage function is reactive. With reactive damages,

the expected value of early information is high, and if perfect information could be

available in 2100, the value of information is $71 and $124 trillion for the normal and

Pareto distributions, respectively. Learning does not have an appreciable abatement

impact when the pure rate of time preference is very low, since low values induce high

abatement regardless of the learning rate.

Table 7.4: Optimal first-stage control rates (µ1) as a function of learning under al-
ternate assumptions about the climate sensitivity parameter distribution, damage
function, and pure rate of time preference (ρ). The distribution cases assume reac-
tive damages, and the damage function cases assume a lognormal distribution. The
baseline ρ is 1.08 percent.

Distribution Damages ρ
N L P Quadratic Reactive 0% 1.08%

No Learning 0.75 0.80 0.89 0.29 0.80 0.90 0.80
2100 0.58 0.59 0.59 0.26 0.59 0.84 0.59
2050 0.49 0.50 0.51 0.24 0.50 0.83 0.50
Perfect Information 0.44 0.45 0.46 0.23 0.45 0.83 0.45

7.3.4 Elasticity of Marginal Utility and Risk Aversion

The isoelastic utility function does not differentiate between risk aversion, aversion

to intertemporal inequality, and aversion to intratemporal inequality, which are all

controlled by the elasticity of marginal utility parameter (η). However, psycholog-

ical research suggests that individuals are not equally averse to risk and inequality

(Atkinson et al., 2009; Traeger, 2009). Thus, an appropriate value for the societal η

parameter is unclear.

Figure 7.5 compares first-stage control rates for various assumptions about η when

τ = 150 and reactive damages are assumed. The U-shaped relationship reflects the
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dual role of the parameter both as the elasticity of marginal utility of consumption and

as the coefficient of relative risk aversion. The first effect tends to lower the control

rate as η increases (due to discounting), and the second effect tends to increase the

control rate (due to risk aversion). The relationship between optimal abatement

and changes in risk preference in Figure 7.5 shows that the diminishing marginal

utility effect is stronger than risk aversion in this context. The minimum control rate

value depends on assumed climate sensitivity distribution, though the general trend

is similar.
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Figure 7.5: Optimal first-stage control rates (µ1) as a function of the elasticity of
marginal utility (η).

7.4 Discussion

The results from Section 7.3 suggest that answers to policy questions about vast uncer-

tainty about uncertainty hinge critically on judgments about model representations

of uncertainty, learning, damages, and discounting.27 It is not merely uncertainty

27From a policy perspective, the results highlight the importance of flexibility, information gath-
ering, and adjusting to new and updated information. Such flexibility provisions are central features
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that influences climate policy decisions but also uncertainty about the evolution of

uncertainty over time. Learning reflects the relationship between the arrival of new

information and its effect on uncertainty, which can manifest itself in any change in

the joint probability density function. Such information can come from a variety of

sources like modeling, experimentation, and observation.

The results in Section 7.3 should refocus attention to the literature on the dynam-

ics of learning, which offers many insights but unresolved questions about the nature

and relevance of learning. A summary of learning in the context of global change and

environmental policy can be found in Parson and Karwat (2011) and O’Neill et al.

(2006). There is a more limited body of research specifically devoted to learning in

relation to the climate sensitivity parameter, which is the central uncertainty in this

chapter. Le Treut et al. (2007) trace the trajectory of climate sensitivity estimates

over time. Many papers (Zaliapin and Ghil, 2010; Hannart, Dufresne, and Naveau,

2009; Stainforth et al., 2005) describe reasons for the currently wide range of climate

sensitivity parameter estimates (e.g., cloud processes and oceanic response) and how

increased research in these areas may reduce uncertainty. There are also many ex-

planations for why the current distribution associated with the climate sensitivity is

likely skewed and fat-tailed (Weitzman, 2012; Roe and Baker, 2011).

In problems of global change, there is a concern that the timescales associated

with learning and adjustment may be long relative to the timescales over which

policy-relevant decisions are made (Baker and Roe, 2009; Oppenheimer, O’Neill, and

Webster, 2008; Allen and Frame, 2007). For climate change, this timescale incompat-

ibility is related to “stock-accumulation inertias” in a range of “physical and biologi-

cal processes that are extremely slow to respond to attempts at reversal” (Weitzman,

2012). For instance, deep ocean adjustments take several centuries to come to equilib-

rium; however, this timescale is weakly constrained given the limited understanding

about ocean adjustment processes (Baker and Roe, 2009). These long inertial lags

and pipeline commitments are the primary justifications in Weitzman (2012) for the

150-year expected learning time.28

of adaptive environmental management.
28Expectations about the role of corrective, recourse actions are shaped not only by the potential

for learning but by barriers to reacting. Thus, the uncertainty associated with learning presents
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The literature on the expected time to reduce uncertainty for the climate sensi-

tivity parameter addresses these concerns predominantly by using Bayesian learning

frameworks. This literature is extremely relevant to the results in this chapter, since

Section 7.3.3 shows that optimal near-term abatement strongly depends on this ex-

pected learning time. Kelly and Kolstad (1999) show that it may take 90–160 years

to learn the true value with 95 percent confidence and 110–200 years with 99 percent

confidence. They describe the tradeoff between the benefits of accelerated informa-

tion gathering and controlling emissions under uncertainty. Leach (2007) extends

this work by showing that additional uncertainty in the persistence of temperature

deviations may extend the required learning time by hundreds of years. Webster,

Jakobovits, and Norton (2008) demonstrate how additional sources of uncertainty in

climate processes can increase the time needed to reduce uncertainty and how obser-

vations of additional climate-related variables like sea-level rise can reduce learning

times. The paper calculates that these additional observations may reduce uncer-

tainty by 20–40 percent over the next 20–50 years. Kelly and Tan (2013) investigate

the influence of fat-tailed uncertainty on the learning rate. They find an average

learning time of about 80 years but show that probability mass in the tail of the dis-

tribution diminishes relatively rapidly if the true climate sensitivity value is not high,

which means that it may be possible to learn enough to rule out very high values in

the coming decades (even if the exact value is not known for much longer).

The important, decision-relevant characteristics of the learning process are how

the dispersion of a probability distribution changes as new information arrives, the

rate of new information arrival, and whether learning will converge to the true value.

Two common assumptions about decision-making under uncertainty are that new

research and information will lead to more accurate beliefs and that such information

will reduce uncertainty. Although these intuitions hold in many decision contexts, it

is not necessarily true a priori that learning will converge on the true value and/or

reduce uncertainty in all cases (Oppenheimer, O’Neill, and Webster, 2008; Henrion

and Fischhoff, 1986).

both scientific and political questions, as midcourse corrections require an understanding of climate
system dynamics (i.e., to extract clear signals in time to act) and of political feasibility (i.e., to
adjust emissions accordingly).
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Disconcerting learning refers to the notion that new information can lead to larger

uncertainty (Hannart, Ghil, and Dufresne, 2013).29 In contrast, reassuring learning

corresponds to the conventional idea that learning reduces uncertainty, which is as-

sumed in many models of climate-related learning (Webster, Jakobovits, and Norton,

2008; Keller, Bolker, and Bradford, 2004). The potential for disconcerting learning is

especially relevant in the context of the climate sensitivity parameter, since Hannart,

Ghil, and Dufresne (2013) show that the two most prominent characteristics associ-

ated with a greater likelihood of disconcerting learning are high skewness and fat tails

in the prior. A combination of these features, as with the Pareto distribution, results

in a substantial increase in the likelihood of disconcerting learning and consequently

in greater uncertainty about the future trajectory of uncertainty and the expected

learning time.30 For instance, Morgan and Keith (1995) asked climate scientists to

estimate the probability that the uncertainty surrounding the climate sensitivity pa-

rameter would increase by 25 percent or more after a 15-year research program with

an annual budget of $1 billion. The responses ranged from 0.08 to 0.30 (with an

average of 0.19), as respondents viewed unforeseen complexities arising from research

and experimentation as more likely to increase uncertainty. Although the policy

implications of disconcerting learning in the context of climate change are unclear,

distributions associated with disconcerting learning generate reassuring trajectories

for most cases, and when such unexpected events arise, disconcerting learning is a

transient state and will eventually result in reduced uncertainty (Hannart, Ghil, and

Dufresne, 2013).31

Negative learning occurs when new information causes current beliefs about an

29Hannart, Ghil, and Dufresne (2013) provide a mathematical definition for the occurrence of
disconcerting learning. The paper uses standard deviation as a measure of uncertainty, though
other metrics are possible.

30For instance, uncertainty may increase in the near future as computing power permits large-
ensemble simulations of increasingly complex coupled atmosphere-ocean general circulation models
(Rowlands et al., 2012).

31Disconcerting learning reinforces the notion that constant or increasing uncertainty can be com-
patible with scientific knowledge accumulation (e.g., an improved understanding of the climate sys-
tem). Consequently, although there are many unresolved questions about definitions of learning and
scientific progress (Kitcher, 1993; Kuhn, 1962), uncertainty is not an appropriate metric to assess
such advances.
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unknown parameter to diverge from its a posteriori true value (Oppenheimer, O’Neill,

and Webster, 2008).32 Progressive learning refers to the increasing correspondence

between an estimate and the true value over time. Apart from a few notable excep-

tions (Oppenheimer, O’Neill, and Webster, 2008; Keller and McInerney, 2008; Small

and Fischbeck, 1999), most Bayesian analyses assume that the underlying model,

including the likelihood function, are correct. However, the omission of a structural

feature in a model can lead attempts to learn about an uncertain parameter to nar-

row on an incorrect value. Oppenheimer, O’Neill, and Webster (2008) show how such

manifestations of negative learning can lead to substantial losses if, for instance, a cli-

mate model is subject to structural error and neglects a positive feedback on radiative

forcing. Historical examples of negative learning include stratospheric ozone deple-

tion, melting of the West Antarctic Ice Sheet, and energy and population projections

(Oppenheimer, O’Neill, and Webster, 2008). Like disconcerting learning, negative

learning has the potential to lengthen the duration of the learning path and to delay

midcourse corrections.

Although this taxonomy of learning does not provide unambiguous implications

for policy, a few modeling recommendations for the treatment of uncertainty and

learning emerge from this literature. First, uncertainty quantification should be given

increased research attention commensurate with its importance in determining model

results. The overconfidence effect is a contributing factor in both negative and dis-

concerting learning, which suggests that more careful attention must be given to as-

suaging cognitive biases and to employing probability elicitation techniques that are

not based solely on historical values, which may be unreliable for prediction. Greater

focus should likewise be placed on poorly understood scenarios in the extremes of

distributions and on alternate models, especially when such efforts generate prospec-

tive information with the possibility of changing the default decision. Oppenheimer,

O’Neill, and Webster (2008) suggest that characterizing uncertainty should emerge

as a “co-equal partner with consensus building.” Second, given past experience and

the possibilities for negative and/or disconcerting learning, modelers should compare

32There are many possible manifestations of negative learning, including increasing variance when
a distribution is centered on the true outcome, decreasing variance centered on a value sufficiently
far away from the true value, or shifting a distribution away from the true value.
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forecasts with evolving observations to determine trends in estimation errors. Tools

from disciplines like statistics, decision analysis, and the history of science can be

used to understand how scientific judgments are made and to ascertain why errant

forecasts were wrong (Craig, Gadgil, and Koomey, 2002).33 Understanding the dy-

namics of error is important in understanding the dynamics of learning. Learning

research could offer spillovers to other areas of inquiry owing to the prevalence of

decision problems in which provisional, near-term commitments must be made but

revised over time in response to new information.

This brief survey of the learning literature suggests that the simplified represen-

tation of learning described in Section 7.2 is almost certainly wrong. However, the

existing literature does not unambiguously point toward a correct way to concep-

tualize or model learning in this context. The trajectory of uncertainty for values

like the climate sensitivity parameter is uncertain. In highlighting the role of learn-

ing as a paramount feature in the debate about uncertainty, the analysis from this

paper provides more questions than answers and replaces one intractable problem

with another. “The expansion of our knowledge has expanded the circumference of

our ignorance” (Fairbank, 2006). However, this analysis has offered critical insights

for decision-making and identifies important dynamics that should be given greater

research attention, which are important contributions in a research enterprise as com-

plex as climate change economics.

7.5 Summary and Extensions

This analysis demonstrates how optimal policy prescriptions from IAMs are highly

sensitive to the specification of uncertainty and learning. Given that the represen-

tations of these elements are key determinants of modeling results, analyses that do

not test over a range of assumptions about the characterization of uncertainty and

33These dynamics are especially significant given that scientific estimates in global change research
tend to be biased toward caution. Brysse et al. (2013) suggest that dynamics of the scientific method
and assessment processes create systematic biases toward underestimation due to the methodological
standards, epistemic procedures, and norms (e.g., objectivity, skepticism, restraint, moderation) of
the scientific community.
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its evolution may be misleading.34 Weitzman (2009) has been influential in advanc-

ing the dialogue surrounding the role of uncertainty in energy modeling; however, a

more realistic refinement of this work gives insights into the relative importance of

uncertainty and learning under various specifications of discounting and damages.

Model results illustrate the value of learning and midcourse corrections on reducing

consumption risks imposed by uncertain damages from climate change. The results

demonstrate the value of early information about the severity of climate change, which

echoes conclusions of previous dissertation chapters. It is not necessarily learning

about particular outcomes that is important but the expectation of obtaining more

information, which allows decision-makers to adjust their decision strategies. The

potential for learning reduces the stringency of precautionary mitigation even under

fat-tailed uncertainty. If perfect information about the climate sensitivity parameter

were available immediately, it would reduce climate insurance through abatement by

nearly 50 percent, and the expectation of learning in 80 years reduces control rate by

26–36 percent.35

Ultimately, fat tails impact near-term policy significantly when damages are strongly

convex and when learning is slow (specifically, when information about the true cli-

mate sensitivity parameter does not arrive until after 2100). Thus, fat tails per se are

not sufficient enough to merit immediate and stringent mitigation, as they also require

reactive damages and slow learning.36 The sensitivity of IAM results to the specifi-

cation of the damage function hints at the need for more research on the economic

impacts of large warming. The terra incognita of evaluating welfare implications in a

34Currently, testing the robustness of results over assumptions about discounting is a common
practice and a prerequisite of credible analysis. Uncertainty and learning should be treated in a
similar manner.

35The level of actual abatement embodied in future policies will likely be determined by polit-
ical decisions tempered by many factors not accounted for in this simplified modeling framework.
However, to extent to which scientific evidence, economic and ethical reasoning, and decision the-
ory are used to inform decisions, climate policy should be guided by long-term risk management
considerations, which include the possibilities of fat-tailed uncertainty and learning.

36The results demonstrate how incorporating fat tails does not suggest that we are on course for
an inevitable (or even likely) disaster unless dramatic and immediate abatement is undertaken. Most
catastrophic events are extremely unlikely to materialize, since tail probabilities are still compara-
tively small, even for the fat-tailed Pareto distribution. However, the analysis also suggests that the
possibility of fat-tailed uncertainty justifies concern about avoiding low-probability extreme events
by purchasing some degree of insurance against risks of severe outcomes.
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world with temperature changes of 10 ◦C (28 ◦F) implies that, instead of using scarce

resources to substantiate consensus issues related to central tendencies, the scientific

and economic communities would be better served by investigating the boundaries of

our understanding about extreme outcomes.

The model used for this analysis is a grossly simplified representation of many

interconnected, complex, and uncertain systems. The analysis provides a stress test

of robustness through a simple, transparent framework. The next step is to add extra

complexity through the possibilities of partial and continuous learning, endogenous

savings rates, more decision stages, and greater disaggregation to verify the conclu-

sions from this simplified model. The broad qualitative insights about the sensitivity

of policy recommendations to the specifications of uncertainty and learning, mutatis

mutandis, would likely be similar in a model with these enhanced features, though

the magnitudes of the interactions would be different.

An important research need is to investigate the dynamics of scientific learn-

ing. As described in Section 7.4, historical examples in global change research sug-

gest that misjudgments and negative learning may have provided misleading advice

to decision-makers during policy debates (Crutzen and Oppenheimer, 2008; Oppen-

heimer, O’Neill, and Webster, 2008). Future work should investigate how new infor-

mation and the ostensibly best-available evidence may prove to be in error and how

errant beliefs may actually influence policy-related decisions (Oreskes and Conway,

2010; Crutzen and Oppenheimer, 2008).

Viewed through the lens of energy modeling, the debate surrounding Weitzman

(2009) implicitly centers on higher-order decision procedures for determining a suit-

able modeling framework in which to evaluate alternative climate policies given the

possibility of fat-tailed uncertainty. The research in this chapter introduces a useful

metric, the value of the stochastic solution, to clarify the conditions under which the

deterministic benefit-cost analysis framework is an inadequate and potentially mis-

leading decision-support tool. Using a sequential decision-making model, the results

demonstrate how the conceptual apparatus of benefit-cost analysis can accommodate

fat-tailed uncertainty with a few computational modifications. Although the analy-

sis assumes that these stochastic modifications adequately represent risk, it can be
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argued that the uncertainties associated with climate change require another type

of modeling framework with a different optimization criterion, especially if potential

discontinuities, irreversibilities, and tipping points are integrated into the analysis

(Hall et al., 2012; Kunreuther et al., 2012; Morgan et al., 2009; Dessai and Hulme,

2004; Kann and Weyant, 2000). Future work should investigate a more systematic

method for determining suitable decision procedures for adjudicating between policy

alternatives in different decision contexts with varying degrees of uncertainty (and

uncertainty about uncertainty).
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Chapter 8

Conclusions and Future Research

8.1 Summary of Findings

This dissertation explores several applications of sequential decision-making for en-

ergy problems under uncertainty. An overarching conclusion is that uncertainty analy-

sis should be given more careful consideration during model development, calibration,

and communication and should not be viewed as an after-the-fact, post-hoc analy-

sis tool (Morgan and Henrion, 1990; Dowlatabadi and Morgan, 1993). Methods and

metrics similar to those employed here should play more prominent diagnostic roles

in energy modeling and integrated assessment modeling. Metrics like the value of the

stochastic solution (VSS) and expected value of perfect information (EVPI) can be

useful guides for prioritizing research efforts and for placing values on reducing the

most consequential uncertainties. These values can be approximated using standard

deterministic models, which may prove to be a useful, comparably low-effort way of

directing attention toward quantifying and analyzing uncertainties that materially

influence near-term decisions. In this way, such methods can be used as complements

to common uncertainty analysis techniques (e.g., sensitivity and scenario analysis) as

catalysts for determining the degree to which more uncertainty analysis is warranted

in specific context.1

1Stochastic programming frameworks also can be complementary to robust decision-making anal-
yses by suggesting candidate decision strategies.

204
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A primary research objective is to investigate what insights can be learned through

sequential decision-making approaches like stochastic programming, which would not

be apparent using deterministic approaches. The range of applications in this disser-

tation suggests that the impacts of explicitly incorporating uncertainty may be large

across a range of domains and that such methods may yield novel, decision-relevant

results. For instance, the research and development (R&D) management work in

Chapter 6 shows how wait-and-see valuation approaches, by not explicitly account-

ing for diffusion-related uncertainties like climate policy, may undervalue the hedging

potential of technologies like nuclear.

Although stochastic programming frameworks can be computationally complex

and data-intensive, these barriers may be small in comparison to potential gains, es-

pecially when spillovers related to uncertainty quantification and model diagnostics

are taken into account. The usability and accessibility of these methods have increased

significantly in recent years by a combination of advances in computing technology,

improved analytical methods for optimizing mathematical programming models, and

more readily available commercial solvers. This dissertation demonstrates the ben-

efits of bridging state-of-the-art operations research with energy models to provide

prescriptive guidance in making deliberative, informed choices. These analytical and

computational advances can be leveraged to take into consideration a wider range of

potential futures and to hedge against negative outcomes.

Another research goal is to link empirical assessments of uncertainty with model-

ing frameworks to provide normative decision support. Using a range of methods to

quantify uncertainty (as detailed in Chapter 3.4), the results illustrate the material

importance of input distributions and suggest that uncertainty quantification should

be a co-equal partner with model building. For instance, the capacity planning re-

sults in Chapter 4 using outdated distributions illustrate the importance of model

assumptions about a decision-maker’s expectations and the significance of updating

model data with the best-available information. Uncertainty quantification efforts

may have important spillover benefits in other modeling domains, which increase the

value of such endeavors.

Even when formal uncertainty analysis is performed, the results of this research
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suggest that probability distributions from existing studies often exhibit overconfi-

dence and do not reflect a full range of possible outcomes. Overconfidence refers to

the systematic tendency to underestimate uncertainty so that the subjective confi-

dence of decision-makers in their probability assessments is higher than their objec-

tive accuracy (Fischhoff, Slovic, and Lichtenstein, 1977). This effect is seen in the

dissertation in diverse areas like forecasts for natural gas prices (Chapter 3.4), predic-

tions for the performance of gas-turbine-based units (Appendix B), and elicitations

for energy technology costs (Appendix B). Since the overconfidence effect narrows

probability distributions, metrics like the EVPI and VSS are consequently biased

downward (Hammitt and Shlyakhter, 1999). This pervasive bias suggests that exist-

ing analyses likely underestimate the value of gathering information about unknown

quantities and of explicitly accounting for uncertainty in modeling efforts.

Given this context of overconfidence, decision-makers should expect (at least in

the near term) to observe an increase in uncertainty over time, suggesting an impera-

tive toward epistemological humility and embracing the ostensibly paradoxical stance

of expecting to be surprised. This point underscores how decision-making in many en-

ergy and climate domains involves an irreducible component of near-term uncertainty

(Maslin and Austin, 2012). Decision-makers should not anticipate that perfect infor-

mation will arrive and eliminate uncertainty in the near future. For problems replete

with complexity, heterogeneity, and sparse data, a corollary is that decision-makers

and policy-makers should resist the temptation to rush toward an unwarranted sense

of certainty with the limited evidence supplied by a single publication. Such overgen-

eralizing and biased assimilation are distractions from more productive tasks asso-

ciated with characterizing and analyzing actual decision problems, which take place

against a background of persistent uncertainty. Decision-makers and policy-makers

should update probability estimates and decisions in accordance with the measured

pace of Bayesian inference and should use a principled, strategic approach to gather-

ing and incorporating new information to iteratively revise beliefs. Decisions that rely

on predictions related to, for instance, the climate sensitivity parameter, upstream

emissions from unconventional gas production, and regional impacts from climate

change should be attentive to these considerations.



www.manaraa.com

CHAPTER 8. CONCLUSIONS AND FUTURE RESEARCH 207

In the longer term, energy and environmental modeling will benefit from adopting

formal methods of uncertainty quantification sooner, as the use of the frameworks

and metrics from this dissertation can reduce the deleterious effects of overconfi-

dence and surprise. Future modeling efforts should carefully consider the impacts

of potential surprises (even though such surprises, by their very nature, are elusive)

and account for a broader range of uncertainties. The strategic selection of a wider

array of sensitivities, robustness metrics, and probability distributions allows audi-

ences to develop more complete insights from modeling exercises while also requiring

more diagnostic experiments. Instead of allocating scarce resources to substantiate

consensus issues related to central tendencies, the modeling community would be

better served by investigating the boundaries of our understanding about extreme

outcomes and surprises, as the analysis of climate policy under fat-tailed uncertainty

in Chapter 7 illustrates. Mason (1969) highlights the importance of “counterplans”

and disconfirming evidence for offering alternate model frameworks and assumptions

in strategic planning settings. Given the complexity associated with energy and envi-

ronmental systems, countermodels can provide maximal stress tests to existing mod-

els and can help to expose embedded assumptions. This dialectical scheme, Mason

(1969) proposes, will assist decision-makers and modelers in synthesizing the jarring

and incompatible viewpoints of different models and their proposed strategies into

one that includes and transmutes them.

There is no one-size-fits-all strategy for analyzing uncertainty. The degree to

which uncertainty is analyzed and incorporated in a given context depends on many

factors like the risk exposure of decision-makers, resources available for analysis, and

potential recourse actions. A range of quantitative and qualitative approaches should

be considered and implemented as appropriate to meet the needs and practical re-

quirements of decision-makers. Modelers should constantly be alert to the possibility

that a simpler analysis approach is available to bound or approximate a quantity of

interest, which can determine whether more sophisticated approaches are necessary.

Sequential decision-making should ideally be used in policy formulation and anal-

ysis. However, given the difficulties associated with implementing and formalizing

such procedures in national and international policy, the greatest impact of these
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approaches may be through modeling to inform policy debates, to diagnose blind

spots, to understand incentives of decision-makers, and to avoid bad decisions. A

central objective of these approaches for uncertainty quantification and analysis is

to promote engagement between decision-makers, policy-makers, and modelers using

the best-available evidence. Stochastic programming efforts like those found in this

dissertation are successful when they can promote discussions that would not oth-

erwise happen. Many insights and relationships from more complicated frameworks

likely could be represented in simpler models, but the effects could not be diagnosed

and identified without building and using more complex models first.

8.2 Capacity Planning under Uncertainty Results

Chapters 3 through 5 investigate the dynamics of capacity planning and dispatch in

the United States (US) electric power sector under a range of technological, economic,

and policy-related uncertainties. Model results suggest that the two most critical risks

in the near-term planning process are natural gas prices and the stringency of climate

policy. As with other applications in the dissertation, this chapter suggests that

planners are likely underestimating the impacts of uncertainty. The appreciable VSS

values suggest that the widely used practice of approximating stochastic programming

models by using ad-hoc combinations of deterministic model runs is suboptimal.

Stochastic strategies indicate that nuclear and lower-cost wind are strong can-

didates for near-term hedges against a variety of uncertainties while allowing the

electric power sector to keep pace with growing demand and retirements in the com-

ing decades. These technologies are attractive investments due to their low life-cycle

greenhouse gas emissions (which reduces exposure to the climate policy uncertainty)

and low fuel price volatility (relative to alternatives like natural gas), which means

that these technologies are economical under a wide range of contingencies and are not

as likely to be mothballed or decommissioned once new information becomes avail-

able. However, the high EVPI found in this analysis suggests that there is a limited

availability of the hedging options in the electric power sector. Consequently, a take-

away for US policy-makers is that, if they can offer a higher degree of climate policy
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certainty, there will likely be appreciable economic benefits for the power sector.

In addition these hedging insights, the results demonstrate that delaying some

investments and waiting for more information can be optimal. Model results sug-

gest that the threat of stranded abatement investments outweighs precautionary ef-

fects and results in a propensity to delay near-term expenditures. In particular, the

stochastic approach will avoid near-term investments in carbon capture and storage

(CCS) due to the possibility that these assets would be decommissioned either if the

climate policy too stringent or too lax or if public opposition prevents cost-effective

carbon dioxide storage. These dampening effects of uncertainty are explained in terms

of the optionality of investments in the power sector, leading to more general insights

about uncertainty, learning, and irreversibility.

Consequently, utilities have little near-term incentive to build CCS-equipped ca-

pacity given uncertainty in climate policy. If learning effects are important for reduc-

ing costs to enhance CCS readiness in future decades, large-scale CCS deployment

may require public-private partnerships for early pilot and demonstration projects as

well as for R&D for capture systems with lower parasitic losses. A parallel analysis

with limited CCS availability suggests that the value of CCS readiness in the second

stage is $13.8 billion. This result illustrates that, although they are not ideally suited

for short-term deployment, CCS technologies may be an important part of the long-

term generation mix. More generally, the large losses under runs that exclude entire

groups of technologies speak to the importance of maintaining a diverse portfolio of

generation options that, if needed, are ready for deployment at reasonable cost and

performance levels.

The largest losses occur when decision-makers’ beliefs depart from the best-available

information either by using outdated distributions for fuel prices or by adopting op-

timistic beliefs about the ability to postpone a comprehensive climate policy. These

results of misestimation underscore the importance of using distributions that incor-

porate actual data (i.e., instead of stylized, ad-hoc distributions) and, more generally,

of updating model data. Such conclusions are especially relevant given the limitations

of existing approaches for uncertainty analysis in utility resource plans, as described

in Chapter 3.4.
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These results suggest that a sequential approach to climate policy (e.g., by im-

plementing a new source performance standard) could incentivize preemptive and

supererogatory abatement efforts until more comprehensive climate legislation is in

place. These policies may be effective instruments to reduce cost risks for utili-

ties, to safeguard against the erosion of public confidence in political institutions, to

demonstrate the feasibility of emissions reductions, and to lower the probabilities of

environmental hazards for society at large.

The modeling results offer many policy-relevant insights about the future role of

unconventional natural gas in the US power sector. The value of control for upstream

emissions from shale gas is shown to be substantial. Limiting methane leakage allows

more gas units to be built and operate during the second stage in scenarios where

higher carbon taxes are realized and natural gas prices are low to moderate. This

research refocuses the debate about methane leakage onto making decisions under

inevitable near-term uncertainty. This reconceptualization resists the notion that a

single “true” value of leakage exists, since drilling sites and practices are heteroge-

neous and may change over time. The implication is that policy-makers should avoid

unnecessary generalizations based on a single empirical study of a specific location

and also should acknowledge that policy-making will always be shrouded in some

degree of uncertainty. Even if the leakage value appears to be on the high end of the

range, natural gas should not necessarily be removed from consideration as an abate-

ment option, as control and capture technologies may become important elements in

the abatement choice set.

Additionally, questions about whether a carbon price will increase or decrease

natural gas consumption and whether shale gas availability will influence investments

in renewable technologies are shown to hinge on interactions between gas prices and

climate policy uncertainties. The shale gas boom will not impede long-term invest-

ments in low-carbon technologies if a sufficiently stringent climate policy is enacted

in the coming decades. However, if policy-makers fail to provide suitable incentives

for firms to internalize climate-related externalities, utilities may overinvest in gas-

related infrastructure and underinvest in low-carbon technologies relative to their
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socially optimal levels. Such effects illustrate the importance of modeling the inter-

actions between multiple uncertainties simultaneously.

8.3 Energy Technology R&D Portfolio Manage-

ment Results

Chapter 6 presents a framework for allocating investments across a portfolio of en-

ergy technology R&D programs. One contribution of this research is to offer guid-

ance about how R&D success valuations vary in different decision-making settings.

Although theoretical results suggest that the effect of decision-making approaches on

R&D valuation is equivocal, experiments using a two-stage stochastic model indicate

that R&D is more valuable in second-best planning environments like when decision-

makers use expected-value approaches. Additionally, these comparisons suggest that

traditional, wait-and-see R&D valuation approaches likely overestimate the value of

R&D success for many programs but undervalue the optionality and hedging potential

of technologies like nuclear relative to the stochastic approach.

R&D plays an important insurance role in second-best policy environments. The

results demonstrate how the expected value of R&D success is modulated by the de-

gree to which environmental damages are internalized. When policy is less stringent

than the socially optimal level, investments in R&D can mobilize low-carbon tech-

nologies that would not otherwise be cost-competitive.2 In this way, R&D provides a

secondary method of greenhouse insurance (Manne and Richels, 1993; Blanford, 2006;

Baker and Solak, 2013) alongside mitigation for reducing exposure to risk, which is

especially valuable if the timing and/or stringency of climate policies are subopti-

mal. For public R&D decisions, the results reinforce the importance of accounting for

economic benefits accruing to all impacted stakeholders (and not just to innovating

firms) and also stress the normative rationale of technology-push policies like R&D

to complement demand-pull measures. Technology policy, even under appropriately

2R&D alone is an inefficient means for achieving emissions reductions. The environmental eco-
nomics literature suggests that, if socially optimal abatement policies prove to be politically infea-
sible, costs induced by such barriers are likely to be substantial (Fischer and Newell, 2008).
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stringent environmental controls, is valuable for reducing compliance costs, acceler-

ating the arrival of commercially viable technologies, and preventing excess reliance

on conventional technologies during the time before large-scale market penetration of

more environmentally benign alternatives.

The proposed framework for R&D portfolio management offers a structure and set

of tools for facilitating information gathering and model improvements. It is designed

to offer support for difficult but necessary decisions in a way that makes its underlying

dynamics and assumptions transparent but realistic. This framework can be updated

and expanded as better information becomes available, as more uncertainties and

R&D alternatives are identified, and as improved models are created. These traits are

integral to the enterprise of managing technological change, as the characterization of

innovation requires expert elicitations and other modeling judgments in areas where

reasonable analysts and stakeholders may disagree.

Ultimately, a broad objective of this work is to assist decision-makers in think-

ing through the benefits of long-term, sustained R&D portfolio expenditures and

to demonstrate the value of such programs. Given the high potential payoff from

R&D but also the political constraints associated with public R&D allocations, even

opponents of R&D projects should consider whether prudent and persistent R&D

investments can be worthwhile insurance against the potential for another “wasteful,

ill-directed response to likely future crises” (Cohen and Noll, 1991). Crisis-driven

spending and the cyclical divestiture of program funding are not conducive to the

production of the useful knowledge and specialized human capital, which require

long-term R&D efforts.3 Given the relatively inelastic supply of scientists and engi-

neers in the short run (Goolsbee, 1998), brief spurts of R&D funding may exceed the

absorptive capacity of the industry and eventually may undercut the potential for

increasing the scale of R&D output (i.e., by increasing wages of a fixed labor supply),

which makes a strong case for steady and predictable R&D funding.

3R&D also may assist with making alternative technologies and proposals available for additional
development and deployment when a crisis does occur, which can help to make such expenditures
less inefficient.
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8.4 Fat-Tailed Uncertainty, Learning, and Climate

Policy Results

Chapter 7 demonstrates how climate policy prescriptions from integrated assessment

models are highly sensitive to the specification of uncertainty, learning, and damages

from climate change. Given that the representations of these elements are key deter-

minants of modeling results, analyses that do not test over a range of assumptions

about the characterization of uncertainty and its evolution may be misleading.4 The

results support the observation that the aim of integrated assessment modeling is not

to find a single optimal global policy to be followed in perpetuity but to avoid grossly

suboptimal policies and to revise policies as new information becomes available. This

reframing echoes the sentiments of Morgan (2011), which concludes that it is mis-

leading to describe the problem as that of finding an “optimal global climate policy”

instead of examining “widely robust strategies.”

Model results illustrate the value of learning and midcourse corrections on re-

ducing consumption risks imposed by uncertain climate damages. The potential for

learning reduces the stringency of precautionary mitigation even under fat-tailed un-

certainty. For instance, if perfect information about the climate sensitivity parameter

were available immediately, it would reduce abatement by nearly 50 percent, and the

expectation of learning in 80 years reduces control rate by 26–36 percent. Ultimately,

fat tails impact near-term policy significantly when damages are strongly convex and

when learning is slow (specifically, when information does not arrive until after 2100).

Thus, fat tails per se are not sufficient enough to merit stringent mitigation immedi-

ately, which also requires reactive damages and slow learning.

Even when fat-tailed uncertainty is included, it is important to note that the

model and results do not suggest that catastrophic outcomes are likely to materialize.

Tail probabilities are still comparatively small for the fat-tailed Pareto distribution.

However, the model does assume that there is a small, nonzero probability of severe

4The decision-relevant impacts of fat-tailed uncertainty comprises a considerably smaller fraction
of the current literature, and this selection bias has the potential to be misleading to policy-makers.
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impacts and that this probability increases in atmospheric greenhouse gas concen-

trations. The analysis suggests that the possibility of fat-tailed uncertainty justifies

concern about avoiding low-probability extreme events by purchasing some degree

of precautionary insurance against these risks until we can obtain more information

about their nature, severity, and likelihood.

The model from Chapter 7 is a simplified representation of many interconnected,

complex, and uncertain systems. The analysis provides a stress test of robustness

through a simple, transparent framework. The next step is to add extra complexity

through the possibilities of partial and continuous learning, endogenous savings rates,

more decision stages, and greater disaggregation to verify the conclusions from this

simplified model. Additionally, this research focuses only on uncertainty related to

the climate sensitivity parameter but does not incorporate other sources like scientific

uncertainty (i.e., imperfect and incomplete understanding of the climate system),

socioeconomic uncertainty (i.e., imperfect understanding of climate change impacts,

distributional impacts on populations, and adaptive capacities of these societies).

Although the analysis assumes that the sequential decision-making model modifi-

cations adequately represent risk, it can be argued that the uncertainties associated

with climate change require another type of modeling framework with different opti-

mization criterion, especially if potential discontinuities, irreversibilities, and tipping

points are integrated into the analysis (Hall et al., 2012; Kunreuther et al., 2012;

Morgan et al., 2009; Dessai and Hulme, 2004; Kann and Weyant, 2000). Unlike

the capacity planning model in Chapter 3, the uncertainties associated with climate

change and associated responses put decision-makers in a realm closer to ambigu-

ity, where relevant parameters are difficult to conceptualize let alone to quantify.

Given that uncertainty is typically represented in an expected-utility framework (von

Neumann and Morgenstern, 1944), when are alternative decision-making approaches

preferable? Millner et al. (2013) use expert elicitations to show how some climate

scientists’ beliefs about the climate sensitivity parameter cannot be captured with

subjective probabilities. This result means that existing elicitations may understate

uncertainty, making the analysis in Chapter 7 especially relevant, and suggests that
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future work should explore additional frameworks for eliciting and incorporating un-

certainty about uncertainty (Heal and Millner, 2013).

The chapter highlights the critical role of metacognitive deliberation in casting

a critical eye toward forecast-driven policy prescriptions. Such domains require the

examination of historical forecasts and analyses of error and systematic bias to give

a better perspective on what modelers are likely getting wrong in existing analysis

(e.g., the ubiquity of overconfidence), even though it is believed that such models rep-

resent the best-available evidence. The importance of metacognitive reflection about

forecasting biases is shown in the complex nature of the scientific learning process,

which has not conformed to expectations about converging on the true value and/or

reducing uncertainty across a range of settings (Henrion and Fischhoff, 1986; Oppen-

heimer, O’Neill, and Webster, 2008; Hannart, Ghil, and Dufresne, 2013). This effect

is also illustrated in the optimistic R&D portfolio recommendations for nuclear, where

the conclusions are tempered by the recognition of the systematic historical overes-

timation of nuclear power deployment and underestimation of its associated costs

(Grübler, 2010; Hultman, Koomey, and Kammen, 2007; Koomey and Hultman, 2007;

Cohen and Noll, 1991). Overall, understanding the historical context of forecasting

and model building in this domain is critical in understanding the present limitations

of quantitative analysis.

8.5 Expert Elicitation Results

A consistent theme throughout this dissertation is the need for more and better

probability elicitations, which should be high research priorities in the near term. In

particular, expert elicitations are critical for uncertainties surrounding technologies

in the energy modeling community, given that such assumptions drive results and

models typically have time horizons of many decades. Although progress has been

made in recent years (e.g., conducting elicitations for many technologies, making data

widely available, and combining elicitation insights across research groups), energy

technology expert elicitations remain highly active areas of research. For the inte-

grated assessment modeling community, expert elicitations are important methods
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of ascertaining more comprehensive understandings of uncertainty compared with

model-driven approaches, since experts have intimate knowledge of the strengths and

limitations of existing models.

The results across many applications in this dissertation demonstrate how model

results are sensitive to input distributions. For instance, the one-sidedness of the

optimal R&D portfolios in Chapter 6 comes from the use of empirical values from

elicitations and strongly suggests that modelers should prioritize nuclear power elici-

tations with careful debiasing. The importance of elicitations reflects a broader con-

cern about more purposeful uncertainty quantification for input parameters across the

energy and integrated assessment modeling communities. When undertaking uncer-

tainty analysis, the use of ad-hoc distributions may ignore important dynamics of the

system under investigation, which may give misleading insights. Chapter 7 explores

the non-robustness of policy recommendations to the representation of uncertainty

about the climate sensitivity parameter (and damage function) and underscores the

importance of assessing probabilities associated with such parameters with resources

commensurate with their influence on model results.

For energy technology elicitations, Appendix B examines the factors that enhance

the reliability of these probability assessments and discusses unresolved questions

about best practices for elicitation protocols. The elicitation for gas turbine systems

shows how face-to-face assessments are extremely useful in critically examining re-

ported probability values, particularly for the tails of the distribution. Based on these

observations and the prevalence of the overconfidence effect, future research should

examine to what degree at-a-distance elicitations exhibit greater overconfidence com-

pared with in-person protocols and how interactive digital tools can bridge this gap

if it is sizable. Answers to these questions are especially relevant given the need for

more frequent elicitations involving rapidly changing technologies like solar (Reichel-

stein and Yorston, 2013), where it is important to use techniques that can save time

and money while not compromising quality.

Ultimately, one of the largest benefits of the elicitation process is that it gives

modelers more opportunities to consult technical experts who have the greatest ex-

perience and familiarity with technologies. Elicitations have an important role in
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energy modeling even in a deterministic setting to help modelers and decision-makers

to identify and avoid potential blind spots in the planning process. For instance,

exogenous technological progress in deterministic models is typically informed by en-

gineering cost estimates, which should rely on elicitations to assess expert opinion

and to structure sensitivities.5

In some respects, expert elicitations are as important for future modeling efforts

as they are for those in the present. Probabilistic assessments preserve information

about current beliefs for use in the future, which means that formally capturing

such beliefs is necessary for hindcasting exercises. Therefore, elicitations play an

integral part in constructing information management systems, improving models

for decision support, and combating hindsight bias (Fischhoff, 1982; Fischhoff and

Beyth, 1975). These assessments are likewise necessary for evaluating the dynamics

of learning (Hannart, Ghil, and Dufresne, 2013; Oppenheimer, O’Neill, and Webster,

2008) and for understanding why errant forecasts were wrong (Craig, Gadgil, and

Koomey, 2002).

Tools like expert elicitations for uncertainty quantification, combined with the un-

certainty analysis techniques described in this dissertation, will be increasingly impor-

tant amid an environment of substantial uncertainty. The emergence of increasingly

powerful tools for coping with risk comes at an opportune time. The coming decades

will exhibit pervasive, multifaceted uncertainty and simultaneously will require in-

creased capital investments. According to the International Energy Agency (IEA,

2012b), global investments in electricity generation and distribution will exceed $17

trillion over the next two decades. Investments in the US power sector must replace

an aging fleet of coal (and later nuclear) generators while keeping pace with growing

demand for energy services and contending with a diverse and uncertain spectrum

of investment alternatives. Additionally, policy-makers have a critical role in this

context and may be able to exert some influence over the decision landscape through

climate and technology policies. Suboptimal decisions can impact the US economy

5Additionally, Parson (2003) suggests that technological assessments and elicitations may serve a
broader function by altering the “technological feasibility on which they are reporting, by advancing
present technical skill, solving problems, and identifying and removing barriers to the implementation
of new processes and products.”
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and global competitiveness; cost ratepayers, investors, and taxpayers considerable

sums; and have significant environmental impacts.

This pervasive risk also represents an important opportunity. When uncertainty is

prevalent and the long-term consequences of near-term decisions are imperfectly un-

derstood, hedging strategies allow decision-makers to shape available options, to cope

with the unknown, to learn from errors, and to exploit new information as conditions

change. The near-term planning opportunities for public and private decision-makers

are especially valuable in light of the available time before new capacity is needed. In

the interim, decision-makers may have the ability to direct R&D toward technologies

and observe whether emerging technologies will exhibit the technological readiness

and cost-competitiveness needed for large-scale deployment. As this dissertation em-

phasizes, timing is critical for the energy sector at this juncture.

The book Shaping the Next One Hundred Years: New Methods for Quantitative,

Long-Term Policy Analysis (Lempert, Popper, and Bankes, 2003) succinctly describes

this simultaneous challenge and opportunity:

The biggest paradox is that our greatest potential influence for shaping

the future may often be precisely over those time scales where our gaze

is most dim. . .Where the future is ill-defined, unpredictable, hardest to

see, and pregnant with possibility, our actions may well have the largest

effects in shaping it.

Ultimately, the goal for decision-makers is to find more efficient and flexible ap-

proaches for grappling with risks associated with the unexpected. The approaches,

metrics, and results presented in this dissertation offer support and insights that assist

decision-makers toward those ends in problems under uncertainty.
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Appendix A

Vector Autoregressive Model for

Fuel Prices

This appendix presents details of an approach for estimating correlated probability

distributions for natural gas and coal prices, which is briefly introduced in Chapter 3.4.

First, motivations for this analysis are presented in Section A.1. Next, Section A.2

discusses model selection and development considerations, followed by a description

of the data and estimation process in Section A.3. This appendix concludes with a

presentation and discussion of the results in Section A.4.

A.1 Introduction

Prices for energy resources are uncertain and fluctuate based on many complex fac-

tors. In the case of natural gas, uncertainty about future prices is also driven by

recent discoveries and increased domestic production of shale gas (Moniz, Jacoby,

and Meggs, 2010). Although abundant gas resources suggest expanded use in the

electric power sector, uncertainty about the environmental impacts of production

and long-run production costs make the extent of this growth unclear (Huntington,

2013; IEA, 2012a; DOE/EIA, 2011a; Coleman et al., 2011). Additionally, natural

gas price uncertainty will be influenced by the unknown policy environment, public

acceptance of hydraulic fracturing, and uncertainty surrounding life-cycle emissions

219



www.manaraa.com

APPENDIX A. VECTOR AUTOREGRESSIVE MODEL 220

for shale gas.

Quantifying and understanding the uncertainty associated with forecasts for future

fuel prices is critical for decision-makers. Many public and private choices, both in

energy industries and other sectors of the economy where energy resources are factors

of production, rely on estimates of energy prices and their associated uncertainty to

inform decisions.

Given the importance of uncertainty quantification in this context, this chapter

formulates and applies a vector autoregressive (VAR) model to estimate probability

distributions over natural gas and coal prices for electric power generators. Using his-

torical data for delivered fuel prices from the 2011 Annual Energy Review (DOE/EIA,

2011b) published by the Energy Information Administration (EIA) and forecast data

from the 2012 Annual Energy Outlook (DOE/EIA, 2012), the model uses a two-step

process to estimate the trend and variability for fuel prices and then employs this

VAR model to create density functions for annual price growth rates. This modeling

approach is based on the techniques developed by Zdybel and Baker (2013).

A.2 Model Selection and Development

The VAR model represents the linear interdependencies among multiple time series.

The value of each variable at time t depends on its own past values and the past

values of other variables. The reduced pth order VAR, which is denoted VAR(p), can

be expressed as:

yt = c+ A1yt−1 + A2yt−2 + . . .+ Apyt−p + et (A.1)

where yt is a vector (k×1) of variable values at time t, c is a vector (k×1) of intercept

constants, Ai is a matrix (k×k) of coefficients (for all i = 1, . . . , p), and et is a vector

(k × 1) of error terms.

The error terms are assumed to satisfy the VAR definitions:

1. All error terms have mean zero: E[et] = 0
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2. The k × k positive-semidefinite matrix Ω represents the contemporaneous co-

variance matrix of error terms: E[ete�t] = Ω

3. No serial correlation: E[ete�t−k] = 0, ∀k �= 0

The first differences of log prices in the model can be interpreted as the log of

price growth in each period. The selection of log price differences guarantees that

forecast prices will be positive when generating price paths. Additionally, log prices

reduce possible effects of heteroscedasticity. To model in differences, one must first

verify that each time series is difference stationary and account for cointegration if it

exists (i.e., if time series variables share a common stochastic drift), which is done in

Section A.3.

The trend specification uses EIA projections from the 2012 Annual Energy Out-

look and historical data from the 2011 Annual Energy Review. The choice to use

the EIA’s forecast data is motivated primarily by the objective of incorporating the

most up-to-date projections, since the Annual Energy Outlook forecasts embody the

best-available data about factors driving the future price trend. A secondary moti-

vation is that using Annual Energy Outlook data permits model updating as better

information becomes available. As shown in later sections, the resulting trend does

not try to replicate the EIA forecast but instead incorporates it into the data.

The historical variance is applied to the future portion of the trend to estimate

probability distributions for fuel prices. The model uses a decomposition method

similar to seasonal decomposition (but uses past variability to define uncertainty).

The resulting model can be used as a decision support tool in many settings.

First, the VAR model can be applied directly in a Monte Carlo framework to generate

sample paths, which can provide decision-makers with a sense of risk over outputs

of interest in an uncertainty propagation analysis. Second, a similar Monte Carlo

analysis can be employed to generate probability distributions over random variables,

which are subsequently used as inputs in a sequential decision-making framework.

This application is used here, as described in Section A.4. Finally, the sample price

paths can be used graphically as an aid for decision-makers to visualize the potential

range of future uncertainty.
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A.3 Data and Methods

A.3.1 Data

Historical data come from the EIA’s 2011 Annual Energy Review (Tables 6.8 and

7.9). Prices between 1980 and 2011 represent the average delivered values for natural

gas and coal in the electric power sector. Forecast data are from the EIA’s 2012

Annual Energy Outlook and give prices for steam coal and natural gas between 2012

and 2035. Figure A.1 illustrates these log prices in first differences.
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Figure A.1: Log prices in first differences for coal and natural gas. Historical fuel
prices (left) are indicated by solid lines and forecast values (right) by dashed lines.

To assess the appropriateness of differencing the time series data, I first deter-

mine that prices in levels are nonstationary (since it is not appropriate to difference

stationary data) and that they are integrated of order one. I use the augmented

Dickey-Fuller test to check for a unit root in the time series sample. The null of a

unit root is not rejected using log prices in levels but is rejected in first differences.

This result suggests that prices are integrated of order one and that a cointegration
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test must be performed.1 The Engle-Granger procedure test statistic indicates no

cointegrating relationship, which suggests that a standard VAR model in differences

is suitable for this application.

A.3.2 Determining the Number of Lags

The number of lags (p) for the pth order VAR is determined using the Akaike informa-

tion criterion (AIC).2 As discussed in Enders (2009), the multivariate generalization

of the AIC is:

AIC(p) = 2s+ T ln |Ω̂| (A.2)

where T is the number of useful observations and |Ω̂| is the determinant of covariance

matrix of residuals for the estimated system.3

The AIC calculations suggest that a model without lags is the best choice for

modeling the fuel prices considered here. Although not technically a VAR model, the

model without lags can be viewed as a random noise process with contemporaneously

correlated disturbances.

A.3.3 Two-Step Estimation Process

The first step is to determine the trend by estimating the VAR(p) model in Equa-

tion A.1 using historical and forecast values. This step gives values of c, Ai, and Ω

(i.e., the covariance matrix of error terms). Here, c and Ai define the trend, and Ω

represents uncertainty. The second step is to define the variability by re-estimating

Ω based on the uncertainty of just the historical data in relation to the trend from

the previous step. This variability calculation reflects only historical behavior by

removing the effect of the forecast period.

1If a cointegration relationship exists, an error correction model must be used.
2Given the small sample size, a correction for finite sample sizes is used: AICc = AIC + 2s(s+1)

n−s−1 ,
where AIC denotes the AIC without the correction, s is the number of model parameters s =
k(1 + pk), and n denotes the sample size.

3Residuals follow a multivariate normal distribution: et ∼ Nm(0,Ω).
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A.4 Results

Using the two-step estimation process from the previous section, the VAR model with

estimated parameters is:

• Coal (with standard error 0.0077)

∆ ln(yct ) = −0.0017 + ect

• Natural gas (with standard error 0.0219)

∆ ln(ygt ) = 0.0084 + egt

• Covariance matrix

Ω =

������

0.0033 0.0006

0.0006 0.0270

������

Since the covariance between coal and natural gas prices is small, these two ran-

dom variables can likely be treated independently without a loss of fidelity, which is

assumed in Chapter 3.4.

The historically adjusted covariance matrix is:

Ω =

������

0.0038 0.0018

0.0018 0.0469

������

Thus, the variances increase when considering historical data only.
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Figure A.2: Historical and forecast prices of coal for the electric power sector. The
VAR model results show the 10th, 50th, and 90th percentile values. The EIA cases
represent the low price, reference, and high price scenarios.

Using the model with estimated parameters in a Monte Carlo simulation with

5,000 samples, Figures A.2 and A.3 show the uncertainty ranges for coal and natural

gas prices, respectively. These figures show the 10th and 90th percentile bands for the

correlated distributions along with the median values over time. The ranges from the

price-path outcomes reflect fuel price uncertainty from a variety of sources like the

economy, technological advances, policy, demand curve shifts, and other factors.

The trend for gas prices closely mirrors the EIA forecast, as the VAR model

suggests that prices will increase slightly over the next couple decades. In contrast,

the model results suggest that the uncertain range of prices may be much wider than

the EIA currently projects, both on the lower and higher ends of the distribution.4

Although the percentile ranges are broad for both fuels, these percentile bands are

reasonable reflections of actual historical price behavior and are especially sensible

4These qualitative insights are similar for the coal analysis.
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for probabilistic frameworks that consider low-probability, high-impact surprises.
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Figure A.3: Historical and forecast delivered prices of natural gas for the electric
power sector. The VAR model results show the 10th, 50th, and 90th percentile values.
The EIA cases represent the low price, reference, and high price scenarios.

Modelers do not often quantify distributions over critical outputs or attach prob-

abilities to possible scenarios, and there is evidence that, when analysts do quantify

uncertainty, they tend to underestimate the range and probabilities associated with

non-expected-value outcomes (Shlyakhtera et al., 1994). Although the EIA scenarios

do not have associated probabilities, these results seem to support this observation

and are consistent with the overconfidence effect (i.e., the cognitive bias where confi-

dence intervals are assessed too narrowly) at an institutional level.
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Appendix B

Energy Technology Expert

Elicitations: An Application to

Natural Gas Turbine Efficiencies

Expert elicitations play important roles in quantifying uncertainty about future cost

and performance characteristics of energy technologies, as these estimates inform a

range of decision and modeling efforts within the energy community. This chapter

examines the factors that enhance the reliability of these probability assessments and

discusses unresolved questions about best practices for elicitation protocols. These

insights are applied in a case study to understand the current state of knowledge

regarding the future of gas turbine systems for electricity generation. Elicitation

results are used as inputs to the capacity planning model in Chapter 3.

The results support the conclusion that prospective efficiency increases are likely

to be smaller than historical trends, which demonstrates the utility of elicitations

in capturing dimensions of technical change that may be absent from forecasting

methods that rely primarily on historical data. However, these median values are still

appreciably higher than the efficiencies used in many integrated assessment models.

227
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B.1 Introduction

Uncertainty analysis has played an increasingly prominent role in energy modeling in

recent years (Kann and Weyant, 2000), particularly in regard to technological change.

This focus comes as no surprise given that assumptions about how technologies evolve

over time are leading determinants of modeling results (Weyant, 2004). Despite con-

siderable unknowns about the dynamics of technological change, it is necessary to

quantify this uncertainty about cost and performance metrics in a range of model-

ing settings. Obtaining a set of potential outcomes and some idea of their relative

likelihoods is required no matter if uncertainty analysis is conducted implicitly (e.g.,

using sensitivity analysis or propagating uncertainty through deterministic models)

or explicitly (e.g., through sequential decision-making frameworks like stochastic pro-

gramming). The interest in characterizing technological uncertainty has grown in the

presence of proposed energy and climate policies to manage technical change through

research and development (R&D).

Although there are many formal methods of quantifying uncertainty, expert elic-

itations are uniquely suited for characterizing technological uncertainty. Statistical

approaches that rely primarily on historical data may not contain sufficient informa-

tion to form conjectures about the future progress or returns on research investments

for specific technologies. Since breakthroughs are fundamentally unique, planners of-

ten cannot extrapolate past trends into the future or use relative historical frequencies

to generate probability distributions over successes of technologies. Thus, when past

data are unavailable or of limited use, one of the only remaining options is to ask

individuals with expertise for their best professional judgments, which often take the

form of expert elicitations (Morgan and Henrion, 1990).

An expert elicitation is a structured, formal process for collecting and assess-

ing probabilistic estimates about uncertain quantities (Keeney and von Winterfeldt,

1989). These elicitations allow expert knowledge about specific technologies to be

embedded in models instead of relying on stylized, ad-hoc distributions over param-

eters of interest, which may be selected with limited consultation about the current

state of knowledge in a technological domain.
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The objectives of this chapter are to:

• Survey the existing literature on energy technology expert elicitations

• Highlight the best practices and unresolved questions relating to existing elici-

tation approaches while suggesting fruitful avenues for future work

• Demonstrate effective elicitation techniques for an overlooked technology that

merits greater attention—namely, natural gas turbine architectures for station-

ary power generation

B.2 Energy Technology Expert Elicitations

Considerable uncertainty about future states of energy technologies suggests that it is

important to collect expert judgments about a range of possible outcomes instead of

focusing only on central tendencies. In this setting, analysts cannot reliably assume

that statistical analyses of historical trends or technological analogues (Rai, Victor,

and Thurber, 2010) will provide accurate forecasts for the future evolution of energy

technologies.1 However, despite considerable uncertainty, probabilistic estimates from

a diverse set of experts, encoded through a structured elicitation process, can offer

valuable insights into technological developments.

B.2.1 Existing Work

Elicitations have been used for decades to encode the knowledge, judgment, and ex-

perience of experts in fields where uncertainty and risk are critical components of

decision-making (O’Hagan et al., 2006; Morgan and Henrion, 1990; Staël von Hol-

stein and Matheson, 1979). Since work by Tversky and Kahneman (1982), protocols

for elicitations have been carefully designed using insights from psychology, decision

analysis, risk analysis, economics, and statistics to reduce distortions from cognitive

1Frequently employed methods for projecting unit cost or performance characteristics using his-
torical trends include regression analysis (Söderholm and Sundqvist, 2007), decomposition (Nemet,
2006), and monitoring for precursors (Martino, 1987).
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biases and heuristics. Many researchers have investigated the strengths and short-

comings of various elicitation methods, and comprehensive overviews of the literature

on the psychology of probability assessment and on elicitation approaches have been

published (Kuhnert, Martin, and Griffiths, 2010; O’Hagan et al., 2006; Gathwaite,

Kadane, and A., 2005; Meyer and Booker, 2001; Hoffman et al., 1995; Morgan and

Henrion, 1990; Hogarth, 1975).

This chapter focuses on elicitation methods and applications for quantifying future

cost and performance characteristics of energy technologies. The emphasis reflects

the objectives of surveying current practices and unresolved questions in this policy-

relevant area and also of applying these insights to investigate the future performance

of gas-turbine-based technologies in the power sector. Although elicitations have

been applied across a range of industries and research domains (Kuhnert, Martin,

and Griffiths, 2010; Ayyub, 2001; O’Hagan, 1998; Hora and von Winterfeldt, 1997;

Morgan and Keith, 1995), the application of elicitations to energy technologies began

in earnest only recently. The limited research attention may come as a surprise given

the pervasiveness of uncertainty in this domain and early interest in such analysis.2

For energy modeling, existing research uses elicitations to explore the future of

several specific supply- and demand-side technologies. The most common objective is

to inform questions of energy R&D policy, which has tremendous uncertainty about

ex-ante returns on investments. The product of these elicitations is a rich set of data

that encodes experts’ best probabilistic judgments about future cost and performance

characteristics for specific technologies conditioned on R&D effort and outcomes.

Table B.1 shows a non-exhaustive list of major energy technology elicitations in re-

cent years. The five institutions conducting widespread elicitation research are across

multiple energy technologies Carnegie Mellon University, the United States (US) De-

partment of Energy’s Office of Energy Efficiency and Renewable Energy (EERE),

Fondazione Eni Enrico Mattei (FEEM), Harvard University, and the University of

Massachusetts Amherst.

• Carnegie Mellon University : Elicitations were largely conducted by researchers

2The Rasmussen report (NRC, 2010) on nuclear reactor safety is a prominent early example and
the first to use quantitative expert judgments in a large risk analysis (Cooke, 2013).
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affiliated with the Department of Engineering and Public Policy in a range of

decentralized studies for amine-based carbon capture and storage (CCS) tech-

nologies (Rao et al., 2006), photovoltaic solar (Curtright, Morgan, and Keith,

2008), and small modular reactors (Abdulla, Azevedo, and Morgan, 2013).

• Office of Efficiency and Renewable Energy (EERE): Researchers conducted elic-

itations for 40 renewable energy and efficiency technologies to support R&D

portfolio management decisions using the Stochastic Energy Deployment Sys-

tem (SEDS) model, which has a Monte Carlo simulation framework. Affiliated

researchers include Sam Baldwin (EERE), Max Henrion (Lumina), Thomas

Jenkin (NREL), and Jim McVeigh (NREL).

• Fondazione Eni Enrico Mattei : Valentina Bosetti and colleagues have con-

ducted elicitations for many energy technologies within a European context

as part of the ICARUS project with a focus on the impacts of R&D (Bosetti

et al., 2012; Fiorese et al., 2013).

• Harvard University : Laura Diaz Anadon and colleagues from the Energy Tech-

nology Innovation Policy Research Group within the Belfer Center for Science

and International Affairs at Harvard’s Kennedy School conducted elicitations

in support of the research and publication of their Transforming US Energy

Innovation report (Anadon et al., 2011).

• University of Massachusetts Amherst : Erin Baker and colleagues conducted

elicitations for a variety of energy technologies, including nuclear (Baker, Chon,

and Keisler, 2008), CCS (Baker, Chon, and Keisler, 2009b), solar (Baker, Chon,

and Keisler, 2009a), battery technologies for vehicles (Baker, Chon, and Keisler,

2010), cellulosic biofuels (Baker and Keisler, 2011), and CCS energy penalties

(Jenni, Baker, and Nemet, 2013).
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Table B.1: Existing literature on energy technology expert elicitations.
Carnegie Mellon EERE FEEM Harvard UMass Amherst Key

Supply-Side Technologies  Published Data
        Nuclear 30 25 4  Conducted
        Coal with CCS 10 13 4  Not conducted
        Gas with CCS 13
        Bioenergy and Biofuels 15 8 6
        Solar 18 16 11 3
        Wind
        Grid-Scale Storage 25
Demand-Side Technologies
        Vehicles 9 7
        Energy Efficiency 9
Policy and/or R&D Scenarios Yes Yes Yes Yes Yes
Elicited Years 2015 (CCS)           

2030, 2050 (solar)
2015, 2020, 2025 2010, 2030 2010, 2030 2020, 2050

Year(s) Conducted/Published 2006–2012 2008–2010 2011–2012 2011 2008–2012
Protocol Method Mail (CCS); 

combined mail/online, 
and face-to-face 
(solar)

Unknown Combined online 
and group (nuclear); 
face-to-face 
(biofuels, solar)

Mail Mail/online (nuclear, 
solar, vehicles), 
combined mail/online, 
face-to-face, and 
phone (CCS, biofuels)

Context US US EU US US
Associated Model(s) N/A SEDS WITCH MARKAL MiniCAM/GCAM

NOTE: Colored cells indicate, for a given research group, whether elicitations for a particular technology were not conducted (white), 
conducted (light orange), or conducted with published data (light blue). The values inside of technology cells indicate the number of experts
included in the study (where available).

There have also been efforts to make elicitation results more accessible and to

compare and aggregate their insights. Megajoule.org is a website spearheaded by Max

Henrion for sharing and reviewing elicitation results. The Technology Elicitations

and Modeling Project (TEAM) is developing an integrated framework for analyzing

and communicating the results from energy technology elicitation efforts. A related

collaboration between Harvard and FEEM researchers compares US and European

Union (EU) elicitations for the future of nuclear power (Anadon et al., 2012).

B.2.2 Discussion of Unresolved Questions

Given the costly and time-consuming nature of elicitations, it is important to identify

and understand the factors that enhance their quality and usefulness. This section

highlights unresolved questions from the literature on energy technology expert elic-

itations and discusses the implications of these issues for modeling results based on

such elicitations.
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In-Person Elicitations, Conditioning, and Tail Events

Perhaps the most significant discrepancy between elicitation protocols is the method

of administering elicitations and whether it is preferable to conduct them in person or

at a distance.3 Although at-a-distance methods are more economical and may allow

greater participation, face-to-face elicitations have typically been preferred in the

broader elicitation community due to a belief that such protocols yield higher-quality

outputs (Curtright, Morgan, and Keith, 2008; Phillips, 1999).

One of the largest concerns about at-a-distance elicitations is that experts may be

conditioning their responses on unspecified events. For instance, results of a recent

elicitation for nuclear technologies (Anadon et al., 2012) demonstrates how experts

believe that capital costs for Generation III/III+ reactors would be higher than at

present. However, questions remain about whether this increase is due to forgetting

curve effects, commodity price escalations, regulatory costs, or another random vari-

able. Aggregate elicited values like price changes are causally overdetermined. It is

impossible to decompose an expert’s response to determine their beliefs about which

factors influenced their response most without the ability to ask follow-up questions

to determine what is implicitly being conditioned upon (e.g., depreciation of knowl-

edge capital, increasing steel prices, inflation). Experts’ mental models play central

roles in the elicitation process (Morgan et al., 2002), but such models are inaccessible

without the “interactive and iterative” (Jenni, Baker, and Nemet, 2013) feedback

between the elicitor and the expert. Although feedback steps can mitigate some of

these challenges for mail or digital elicitations, it is considerably easier to request

feedback in an in-person setting and to reassess values immediately if it is discovered

that the expert is conditioning on something that the interviewer does not intend.

One method of avoiding these omitted variable biases while retaining the con-

venience and cost reductions of at-a-distance elicitations is to make more use of

innovative electronic techniques for conducting elicitations. Web-based interactive

3Although there is disagreement about how to conduct individual elicitations, there is broad
agreement among energy technology research groups that individual elicitations are preferable to
group methods. This sentiment aligns with recommendations in the elicitation literature, which
caution against biases associated with group dynamics that can inhibit dissenting options (Meyer
and Booker, 2001).
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interfaces for authoring and hosting elicitations like Near Zero allow for more feed-

back from an expert conditional on their responses. In general, experimenting with

newer elicitation techniques, particularly in ways that utilize digital tools and com-

bine well-documented best practices from different methods, can improve the quality

of elicitations over time. For instance, Anadon et al. (2012) use a novel, two-phase

approach for conducting nuclear elicitations that begins with interactive online elici-

tations and a group meeting afterward.

A related issue surrounds the most effective means of assessing non-central prob-

ability estimates like the 10th and 90th percentiles. In the domain of energy tech-

nologies, the probabilities of extreme left-tail events (e.g., low capital costs resulting

from technological breakthroughs, which may lead to wide deployment of a particular

technology) and right-tail events (e.g., unexpectedly large costs that result from an

inability to surmount engineering hurdles) are important to assess properly. How-

ever, assessing extreme values can be problematic owing to a host of cognitive biases,

which impede careful consideration of low-probability events (Tversky and Kahne-

man, 1982). The most common bias is the overconfidence effect, which breeds under-

estimation of tail events. A failure to identify or correct overconfidence can result from

not having an interviewer interact with and question an expert in real time, giving

feedback about egregiously narrow distributions. Debiasing is particularly challeng-

ing for the overconfidence effect. Probability estimates may still exhibit this bias

even when assessors are knowledgeable about its existence, which means that simply

providing an information packet before elicitations may not be enough to safeguard

against excessively narrow distributions.

Selection of Experts

The identification and selection of experts may be nearly as important as the design

of the protocol itself. Although many technological elicitations are conducted to

gain probabilistic information about future costs and performance characteristics,

requesting cost and performance values from the same experts can be problematic.

The catch-22 of technological elicitations is that experts must be able to assess the

probability of meeting specific cost targets, which requires a detailed understanding of
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the technology; however, technical experts may be less familiar with the factors that

influence costs. The task of predicting costs is as complex as forecasting technological

breakthroughs, because a technology’s cost depends on many interrelated factors like

prices of commodities, specific manufacturing processes that are used to produce the

technology, the technology’s design, learning effects, and economies of scale.

Since scientists and engineers may not be the most appropriate candidates to

assess these economic values, it is important to elicit additional values from economic

or industry specialists who have a familiarity with specific technologies. This aligns

with the general best practice of encouraging elicitations with experts from a wide

range of backgrounds and viewpoints to avoid bias (Meyer and Booker, 2001; Keeney

and von Winterfeldt, 1991). Another method of overcoming this limitation is to elicit

only cost values from cost experts and technology performance values from technology

experts. Although this would reduce the efficiency of the elicitation process, it would

likely provide better quality results. Currently, there has been a tendency to elicit

many values at once instead of concentrating on a few parameters, which may be

negatively impacting elicitations.

The elicitation literature also suggests that it is important to have a cross-section

of experts from industry, government laboratories, and academia.4 This insight has

largely been incorporated in all elicitations, though little work has been done to deter-

mine which types of experts provide the most reliable elicitation values. Preliminary

research (Anadon et al., 2012) suggests that experts from industry are more pes-

simistic about future costs than experts in public institutions (with academics being

the most optimistic).5 There is also recognition that expert opinions may differ by

country and that it is important to conduct elicitations with global experts.6

4As Morgan et al. (2009) note, selecting experts differs from the process of estimating an un-
derlying true value through random sampling. For expert elicitations, “it is entirely possible that
one expert, perhaps even one whose views are an outlier, may be correctly reflecting the underlying
physical reality, and all the others may be wrong.”

5This effect may potentially be due to a range of factors, including industry experts being most
familiar with market barriers or academics’ first-hand knowledge of cutting-edge technologies that
are only on the brink of commercialization.

6The first paper to explore this issue (Anadon et al., 2012) indicates that there are significant
differences between expert opinions in the US and EU.
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B.3 Natural Gas Turbine Elicitations

B.3.1 Motivations

Recent advances in technologies like horizontal drilling and hydraulic fracturing have

caused rapid increases in production from unconventional natural gas resources like

shale formations. However, the same technologies that have facilitated this growth

have also raised important questions about their environmental impacts. Natural

gas is broadly considered a more environmentally benign alternative to coal due to

its lower carbon dioxide emissions from combustion and its avoidance of pollutants

like sulfur, particulate matter, and mercury. These environmental benefits, combined

with abundant reserves, suggest that unconventional gas can play an important role

in national and international energy policy—bridging a transition to a lower-carbon

economy, reshaping energy security, and altering investment decisions in the electric

power sector (Pacala and Socolow, 2004; DOE/EIA, 2011a).

Although abundant gas resources suggest expanded use in the electricity sector,

uncertainty about the environmental impacts of production and long-run production

costs makes the extent of this growth unclear (Bistline, 2012; DOE/EIA, 2011a; Cole-

man et al., 2011; Moniz, Jacoby, and Meggs, 2010). Additionally, natural gas price

uncertainty will be influenced by the unknown policy environment, public acceptance

of hydraulic fracturing (Kriesky et al., 2013; Brown et al., 2013; Brasier et al., 2011),

and uncertainty surrounding life-cycle emissions (Howarth, Santoro, and Ingraffea,

2011; Jiang et al., 2011).

Another relevant uncertainty that will shape the role of natural gas in the electric

power sector is the future performance of gas-turbine-based technologies. In particu-

lar, first-law efficiencies of these technologies (both with and without carbon capture)

may determine the diffusion of new capacity and market share of generation from

natural gas. Such characteristics are especially important for a technology subject

to large fuel price volatility and to similar levelized electricity costs as other techno-

logical substitutes, which mean that even efficiency changes of a percent or two may

have modest impacts on future diffusion and utilization of these technologies.

The goal of this elicitation is investigate the best practices described above through
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a case study of a policy-relevant technology that has been hitherto neglected in the

energy technology elicitation literature. In particular, the aim of this work is to

represent the current state of knowledge regarding the future of gas turbine systems

for new central station electricity generation. As Table B.1 suggests, most elicitations

for fossil-based electricity generation technologies have focused on coal with CCS, and

when research groups look at gas with CCS, it is typically to encode uncertainty about

capital costs. Here, expert judgments about the first-law efficiencies of commercially

viable natural-gas-fired power plants are elicited.7

In the absence of this approach, most energy-economic models simply assume that

future plant efficiencies will remain constant at current levels (with combined cycle

efficiencies between 50 and 60 percent) or will marginally increase between now and

2050, as shown in Figure B.1. Even slight deviations from these efficiency values

can have significant impacts in the development and deployment of gas-turbine-based

systems, particularly when natural gas prices and climate policy are uncertain and

there are many substitute technologies and fuels.

7Results from these expert elicitations are used as inputs to the stochastic modeling framework
in Chapter 6, which assists decision-makers in the US electric power sector with capacity planning
and energy technology R&D portfolio optimization under a range of technological, economic, and
policy-related uncertainties.
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Figure B.1: First-law efficiency values (2010–2050) on a lower heating value (LHV)
basis for a range of energy-economic models along with assessed range of 2025 effi-
ciencies from this elicitation.

B.3.2 Protocol Summary

The elicitation protocol for this study was designed by drawing on the literature on

techniques to minimize bias in probabilistic assessments (O’Hagan et al., 2006; Meyer

and Booker, 2001; Keeney and von Winterfeldt, 1991; Morgan and Henrion, 1990;

Staël von Holstein and Matheson, 1979) while addressing the specific issues raised

in Section B.2.2. The protocol emphasizes robust suggestions for best practices like

conducting in-person elicitations, carefully defining all terms and metrics, informing

experts about common biases and strategies to avoid them (along with warm-up

exercises and reminders during the elicitation discussion), and using visualization



www.manaraa.com

APPENDIX B. ENERGY TECHNOLOGY EXPERT ELICITATIONS 239

tools to facilitate quantification.

The elicitation focused on commercially viable natural-gas-fired power plants with

the highest available first-law efficiency in 2025. This gas-turbine-based system should

be scalable to a plant size of 500 MW and must be compliant with Clean Air Act

regulations. Although the stochastic model in which this information is used contains

fossil units with and without carbon capture, the elicitations considered only systems

without carbon capture. These efficiency values are for commercially viable gas tur-

bine technologies only, which is defined as having a total overnight capital cost of the

system being less than or equal to $1,000 per kilowatt.8

The description of this plant was intentionally general to allow for the possi-

bility that future gas-fired systems may be very different from the most commonly

implemented baseload plants today, which are typically combined cycle Brayton-

architecture gas turbines with bottoming steam engines. For instance, next-generation

combined cycle architectures may use a gas turbine as a bottoming engine in a solid

oxide fuel cell, gas turbine combination. The decision to elicit values for a single

technical parameter allowed the technological experts to focus on areas within their

primary domain of expertise. Restricting attention to a single value also allowed for

a more in-depth discussion of how the expert viewed the history and future status of

the field, which can take many hours.9

The second portion of the elicitation aimed to understand how enhanced public

and/or private R&D programs in the US may impact the efficiencies of these technolo-

gies. There are many ways to conceptualize the success of R&D projects, as discussed

in Chapter 6.1. Success can be viewed as the increased (binary) likelihood of success

in reaching fixed technical or cost metrics (Baker, Chon, and Keisler, 2009a) or as an

acceleration in the number of years required to reach such metrics (Blanford, 2009).

The research framework here conceptualizes R&D success as adjusting the range of

8Expressed in terms of 2010 US dollars. This value reflects the approximate future cost of a
natural gas combined cycle unit according to the Energy Information Administration’s 2012 Annual
Energy Outlook. The phrase “commercially viable” is used to indicate that the technology is cost-
competitive with other forms of baseload electricity generation.

9The average elicitation session took three hours with the shortest lasting about two hours.
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expected cost and performance metrics. The versatility of this probabilistic frame-

work allows for a diverse range of representations within a stochastic programming

setting, including shifting the mean of a distribution over a target R&D parameter

(e.g., capital costs), reducing the variance, or eliminating fat tails (e.g., eliminating

the possibility that a technology is always too expensive for deployment).

Since the selection of experts is nearly as important as the protocol itself, experts

were recruited from a range of backgrounds in industry, national laboratories, and

academia. Following a literature review, experts were contacted who had technolog-

ical familiarity with gas-turbine-based architectures for stationary power generation

with a preference for experts who could meet for in-person elicitations, who had strong

technical expertise (since the focus was a technical parameter), and who are in the

US. Quality control to ensure expertise was managed on the front end as assessors

were being selected so that combining distributions later would not entail subjective

weights. Table B.2 lists participants in the elicitations in alphabetical order.

Table B.2: List of experts and affiliations from the gas turbine elicitations.

Name Affiliation

Leonard Angello Electric Power Research Institute
Chris Edwards Stanford University
Dale Grace Electric Power Research Institute
Sankaran Ramakrishnan Stanford University

Each expert received a packet in advance of the interview, which clearly defined

the quantity of interest, discussed common biases, and provided a general overview

of the elicitation process. The design of the elicitation protocol was based on the

Stanford/SRI Assessment Protocol10 with modifications from the literature:

1. Motivating and Briefing : Each session began by discussing the structure of the

elicitation, by providing background about the research and how the results will

be used, and by answering the expert’s questions about the elicitation process.

10This section summarizes the primary steps and draws attention to modifications of the standard
Stanford/SRI Assessment Protocol. Other authors (Staël von Holstein and Matheson, 1979; Morgan
and Henrion, 1990) provide extensive information about the standard SRI Protocol.
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The briefing helped experts understand the elicitation approach, to establish a

sense of rapport, and to demonstrate that the elicitation was useful and worthy

of serious effort.

2. Structuring : The next stage began by arriving at an unambiguous definition

of the quantity of interest (expressed in manner that was conducive to the

expert providing accurate judgments) and by determining if there were any

conditioning factors that may influence the value of the quantity. This stage

led into an extended technical discussion to understand how the expert saw the

past, present, and future of the field. Also, this discussion allowed the experts to

convey which evidence seemed most compelling and which factors and functional

relationships were important for understanding the future of gas-turbine-based

systems for power generation. This stage of the pre-encoding process was often

the longest in the elicitation process (Staël von Holstein and Matheson, 1979).

3. Conditioning : The objective of this step was to condition the expert to think

deeply about his or her judgment and to avoid the cognitive biases discussed in

the information packet. This stage incorporated a series of warm-up questions

to familiarize the expert with the concepts, structure, and techniques of the

elicitation process and to get them thinking in terms of probabilities. This por-

tion of the elicitation began with “almanac questions” for unrelated quantities

and then moved to more domain-specific questions related to gas turbines.

4. Encoding : This stage involved the actual probability encoding process for the

quantities of interest. The step began by establishing maximum and minimum

credible values and by probing the expert to think carefully about these extreme

values (e.g., asking for backcasts through bounding cases, where experts had to

invent plausible explanations for why the true value could be lower or higher

than their initial range). Once this range was chosen, cumulative probability

values were elicited largely using fixed-value methods with consistency checks

using fixed-probability questions. During this process, carefully articulated jus-

tifications and reasons for and against their judgments were requested.
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5. Verifying : The objective of this final step was to test the quantitative judgments

that the expert provided to ensure that the values accurately reflected their be-

liefs. The values given by the expert were recorded in a spreadsheet so that

the results could be instantaneously plotted as both probability density func-

tions (PDFs) and cumulative distribution functions (CDFs). Any remaining

inconsistencies were resolved through conversation and iteration.

The elicited values from individual experts were later combined to summarize the

current state of expert opinion in an aggregated manner. Although there are many

diverse mathematical combinations and justifications for these methods (Clemen and

Winkler, 1999), the linear opinion pool method was used with equal weights attached

to each expert’s input. There are many convenient axiomatic justifications for this

approach (Clemen and Winkler, 1999) and evidence that simple combination proce-

dures produce combined probability distributions that perform as well as those from

more complicated Bayesian aggregation methods (Seaver, 1978). As mentioned be-

fore, instead of using complex calibration procedures or differential weighting, the

experts in Table B.2 were selected with great care before requesting their participa-

tion and then treated all experts equally (i.e., weighting was performed up front when

choosing experts instead of post-processing individual elicitation results).

Combined percentile values were fitted to shifted log-logistic distributions. These

three-parameter distributions are versatile enough to represent a range of different

shapes of distributions while offering a convenient way of using the 10th, 50th, and 90th

percentiles to parametrize the distributions and a quantile function that is easy to

use for Monte Carlo experiments. For this work, the shifted log-logistic distributions

were used only as tools to visualize the PDFs and CDFs for the elicited values.

All elicitations were conducted between September and October 2012.
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B.4 Results

B.4.1 Efficiency Elicitations

Figure B.2 shows the CDF of elicited values for first-law efficiencies in 2025 under

the business-as-usual R&D scenario.11 Individual values for all four experts are given

along with the combined and fitted CDF. Although the figure shows some disagree-

ment among the experts particularly for higher efficiencies, it is notable that all

experts agree that the median efficiency value for 2025 will be at least 60 percent.

Recall that Figure B.1 showed that only one existing energy-economic model has an

efficiency value that exceeds 60 percent through 2050.12 Thus, existing models signif-

icantly underestimate performance characteristics for future natural gas systems for

electricity generation.
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Figure B.2: Elicited values for first-law efficiencies (lower heating value basis) of
gas-turbine-based electricity generators in 2025.

11All efficiencies for the remainder of the chapter are expressed on a lower heating value basis.
12The Siemens SGT5-8000H gas turbine achieved a world-record 60.75 percent efficiency in a

combined-cycle configuration at the Irsching Power Station in Bavaria, Germany in May 2011.
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The median first-law efficiency of the combined distribution is about 63 percent,

as shown in Figure B.3. This figure compares the compiled CDFs for the business-as-

usual R&D case and enhanced R&D case. These fitted values are shown as PDFs in

Figure B.4. Experts believe that targeted R&D programs can increase the median ef-

ficiency from 63 to 68 percent and can increase the variance of the distribution. The

increased variance suggests that the impact of research and production experience

could be that new knowledge begets more uncertainty and/or opens up new possibil-

ities for more dramatic efficiency improvements, as discussed in the next section.
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Figure B.3: Cumulative distribution functions of compiled elicitation values for the
base and enhanced R&D cases.
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Figure B.4: Probability density functions of compiled elicitation values for the base
and enhanced R&D cases.

B.4.2 Discussion

The experts agree that efficiency improvements in the coming decades will likely re-

sult from implementing existing research ideas by taking them from the laboratory,

lowering costs, and implementing them at larger scales. Technological advances in gas

turbine design have historically come from three sources: materials science and engi-

neering advances, cooling improvements, and new architectures (Unger and Herzog,

1998). The lengthy technical discussions during the elicitations suggest that these

factors will continue to play some part in future efficiency increases, though likely for

different reasons than historical gains. When asked about prominent uncertainties

that could influence the development of higher-efficiency turbine-based generators,

the consensus view among the elicitations is that natural gas prices and environ-

mental policies will play significant roles. Higher (lower) gas prices are thought to

increase (lower) firms’ motivation to make efficiency improvements. Experts view
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environmental policies (e.g., a potential federal climate policy) and regulations for

emissions from existing assets (e.g., particulate matter and mercury) as important

drivers for technical progress.

Progress in materials science has allowed turbine blade materials to move from

conventional cast alloys in the 1960s to more highly-specialized, single-crystal alloys

today (Unger and Herzog, 1998). These metallurgical advances have made high tem-

peratures possible in combustors and turbine components. Many experts view the

prospect of increasing turbine inlet temperatures and operating at higher pressure

ratios as promising methods of raising efficiency values in the near term, even though

efficiencies exhibit diminishing marginal returns for higher temperatures. Turbine

inlet temperatures are one of the largest sources of competition between big gas tur-

bine original equipment manufacturers (OEMs). The top priority areas for future

materials research are reducing the cost of single-crystal alloys that already exist in

the near term and then developing and commercializing ceramic and metal matrix

composites in the longer term.13 However, although they agree about the potential

importance of ceramics, the experts disagree about the prospects for the widespread

use of ceramics over the next decade.

Cooling techniques for gas turbines typically involve circulating air or steam

through hot turbine components. Technological progress for cooling cascaded as a

series of spillovers from military turbojet engines (where such techniques were devel-

oped in the 1960s) to civilian aircraft two to three years later, followed by diffusion to

stationary power generation in approximately five years (Unger and Herzog, 1998).

Many experts agree that spillovers from aerospace applications are unlikely to con-

tinue at their historical rates, as the operating profiles are very different between

heavy-duty stationary gas turbines and those used for aviation (e.g., different stan-

dards for monitoring and reliability, material needs, environmental conditions, and

weight restrictions). Additionally, cooling techniques advanced along with improve-

ments in computer codes and models for finite element analysis, heat transfer, and

13Ceramic materials can withstand heat and corrosion and allow for higher inlet temperatures
without cooling. In experimental applications as first-stage blades and combustor liners, ceramics
have managed to achieve 37-degree Celsius temperature increases with associated efficiency gains of
six percent (Unger and Herzog, 1998).
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fluid dynamics, which were useful in modeling intricate cooling pathways, tunnels,

and holes to facilitate heat transfer to the cooling fluid. The experts acknowledge

that blade cooling will be an important source of temperature increases, particularly

if materials science progress slows, but did not mention improved computational tools

as a means of achieving these improvements.

Individual experts also suggest that first-law efficiency improvements could arise

from improving auxiliary loads of the cycles themselves, from implementing more

advanced architectures (e.g., intercooling, reheating, wet cycles), and from developing

better heat exchangers.

The greatest disagreement between experts came in elicitations and discussions

surrounding longer-term trends for gas-based architectures, especially for systems

that incorporated fuel cells. Experts agree that the high end of the achievable and

economic efficiency range is between 65–70 percent in the absence of dramatically new

architectures. Efficiencies in this range are viewed as technically feasible but econom-

ically unlikely without enhanced R&D, which would be unlikely to come from major

OEMs due to a lack of incentives for innovation or competition (outside of merely

increasing inlet temperatures). The prospect of an integrated solid oxide fuel cell

and gas turbine system is a highly uncertain one, though a couple of experts suggest

that industry research might move toward this architecture in 10–20 years. On one

hand, these systems may offer a promising route to decarbonization, since fuel cells

provide an inherently high-efficiency approach to chemical separations with very high

separation rates. On the other hand, such systems are currently only demonstrable

at a laboratory level and would face numerous hurdles to commercialization due to

concerns about the overall economics of the system, the longevity of the fuel cell,

the stability of the membranes, and the ability to increase the packing density and

decreasing size by a factor of ten. Experts disagree about the likelihood of achieving

the required performance and cost targets for this fuel cell system even with targeted

R&D. This sense of uncertainty about advanced turbine-based architectures and tech-

nical progress in the mid- to long-term future accounts for the large variance for the

enhanced R&D distribution in Figure B.3.

As mentioned at the beginning of this section, it is not clear prima facie whether
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future performance and cost trends for turbine-based electricity generators will follow

historical values. Although there are many promising developments on the horizon,

there are also many reasons to doubt that historical sources of technological change

(e.g., spillovers from the aerospace industry, rapid advances in computational fluid

dynamics, or increasing turbine inlet temperatures) will continue to be primary drivers

of efficiency gains in the future. Consequently, expert elicitations fill this void by

providing a basis for forecasting future efficiency values for gas-based systems.
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Figure B.5: Historical values of best-available combined-cycle efficiencies (1968–2003)
with a linear trendline. The values at 2025 represent the median combined expert
elicitation values for the base R&D (red square) and enhanced R&D (orange triangle)
with the 10th and 90th percentiles shown with error bars.

Figure B.5 shows the historical values for combined-cycle efficiencies in the US

electric power sector between 1968–2003. A simple linear trendline, when extrapo-

lated to 2025, suggests that efficiencies would reach upward of 70 percent. Although

this efficiency falls within the 10th and 90th percentiles of the elicitation values, the

median estimates under business-as-usual and enhanced R&D conditions are notably
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lower than this trendline. Thus, the expert elicitations support the conclusion that

prospective efficiency gains are unlikely to follow historical trends. However, these

median values are still appreciably higher than the efficiencies used in many integrated

assessment models.

B.5 Summary and Extensions

In addition to the insights about the future of gas turbine systems discussed in the

previous section, these elicitations illustrated many best practices for conducting ex-

pert elicitations.

The largest takeaway was that face-to-face elicitations are extremely useful in crit-

ically examining experts’ reported probability values, particularly for the tails of the

distribution. Feedback questions for participants’ responses make them think criti-

cally about the values they give and force them to brainstorm how extreme values

may be lower or higher than their initial impressions suggest. In one elicitation, a

question was reframed in three different ways before the expert noted the possibil-

ity of using supercritical water injection in the combustor and revised the efficiency

estimate upward. During the debriefing sessions, subjects reported discomfort in

thinking about tail probabilities and suggested that, without the interviewer’s inter-

vention, they would have selected an anchor value and then extrapolated to select

other values. Additionally, the warm-up exercises suggested that the experts were

initially overconfident, as the actual number of “surprises” (i.e., values falling outside

of the 10th and 90th percentiles) was over twice as high as the expected number of

surprises in three of four cases. Thus, based on these observations, future research

should examine to what degree at-a-distance elicitations exhibit greater overconfi-

dence compared with in-person protocols and how interactive digital tools can bridge

this gap if it exists.

Many other advantages of conducting in-person elicitations were observed:

• In-person elicitations allow the interviewer to clarify misconceptions that may

not be noticed without asking probing questions. This technique was invoked
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to determine whether an expert was conditioning on events that were not dis-

cussed, to clarify specific instances of how experts can avoid biases during the

actual elicitation, and to resolve a misunderstanding about the definition of cu-

mulative probabilities, which was discovered when the interviewer noticed and

inconsistency in the given values.

• Conducting an in-person elicitation indicates that the interviewer cares about

the quality of the elicitations and the results of the assessment.

• Many subjects reported that they were more comfortable eliciting the values

face-to-face due to the ability to ask the interviewer questions.

Ultimately, one of the largest benefits of the elicitation process is that it gives

modelers more opportunities to consult technical experts who have the greatest ex-

perience and familiarity with technologies. These experts also have knowledge that

energy-economic models may not capture but is important to the development and

deployment of technologies. Since these insights typically come out in unstructured

conversation, at-a-distance elicitations bypass (or do not take full advantage of) these

deep interactions. This point also implies that elicitations have an important role in

energy modeling even in a deterministic setting. For instance, exogenous technological

progress in deterministic models is typically informed by engineering cost estimates,

which should rely on elicitations to assess expert opinion and to structure sensitivities.

No matter the model structure, elicitations can help modelers to identify and avoid

potential blind spots in the planning process. This function is particularly salient for

energy modeling in the context of climate change, which prominently features a few

nascent technologies.14

Expert elicitations are as important for future modeling efforts as they are for those

in the present. Probabilistic assessments preserve information about current beliefs

for use in the future, which means that formally capturing such beliefs is necessary

14For instance, elicitations in Baker, Chon, and Keisler (2009b) suggest that the prospects of tech-
nical success for post-combustion carbon capture technologies are still controversial among experts
in the area, even though many energy models take the availability of such technologies as given.
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for hindcasting exercises. Therefore, elicitations play an integral part in construct-

ing information management systems, improving models for decision support, and

combating hindsight bias. These assessments are likewise necessary for evaluating

the dynamics of learning (Hannart, Ghil, and Dufresne, 2013; Oppenheimer, O’Neill,

and Webster, 2008) and for understanding why errant forecasts were wrong (Craig,

Gadgil, and Koomey, 2002). Modelers should compare forecasts with evolving ob-

servations to determine trends in estimation errors and to diagnose any systematic

forecast biases.

A stochastic analysis is only as good as the probability encoding process behind

it. The usefulness of models and elicitation processes would be enhanced if future

research compared face-to-face, online, phone, and written elicitations. There are

currently no empirical assessments of whether there is an upward or downward bias

to moments of distributions based on whether elicitations are conducted in person or

at a distance, though the experience here suggests that at-a-distance methods likely

underestimate tail probabilities. These experiments could explore how interactive

digital elicitation tools can bridge the gap between in-person elicitations (which are

recommended by decision analysis practitioners) and at-a-distance paper elicitations

(which are prevalent due to their cost-effectiveness and economies of scale). Answers

to these questions are especially relevant given the need for more frequent elicitations

involving rapidly changing technologies like solar (Reichelstein and Yorston, 2013),

where it is important to use techniques that can save time and money while not

compromising quality.
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Appendix C

Comparing R&D Success

Valuations

C.1 Motivations and Problem Description

The research and development (R&D) literature, particularly for energy technolo-

gies, has primarily concentrated on the probabilistic relationship between R&D in-

vestments and potential outcomes while treating the valuation of these outcomes

deterministically. It is common to represent R&D benefits through standard energy-

economic or integrated assessment models, which typically do not represent uncer-

tainty explicitly and do not capture the hedging potential and optionality of technolo-

gies. These models value R&D by using the wait-and-see (learn-then-act) approach,

which assumes that uncertainty about exogenous market conditions is resolved at

the beginning of the time horizon. This solution suggests that perfect information is

available before capacity planning decisions are made.

Such information is usually not available when early-stage deployment and R&D

decisions are made, and the decision-maker must select a strategy that hedges against

possible contingencies in an uncertain environment. This here-and-now approach

seeks to identify a stochastic solution, which is the same under all states of the world

until uncertainties are resolved and recourse decisions can be made. The explicit in-

clusion of uncertainty is critical in energy-related decisions, because exogenous market

252
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uncertainties are pervasive and may be key drivers of diffusion. Such uncertainties

may include advances in substitute/complementary/enabling technologies, demand,

public acceptance, and the regulatory environment.

The stylized example presented here demonstrates how the value of R&D success

can vary based on the decision-making approach used for capacity planning and dis-

patch decisions. This example illustrates how the influence of different approaches on

R&D valuation is ambiguous so that there is no necessary relationship between the

value of R&D success and the decision-making approach used to evaluate program

benefits.1 The success valuation depends on characteristics of the decision problem

(e.g., the objective function formulation, constraints, and parameterization), the un-

certainties considered, and the nature of the R&D program.

Comparing the stochastic hedging (i.e., here-and-now) valuation with the perfect

information (i.e., wait-and-see) approach, the necessary and sufficient condition for a

higher value of R&D success under the wait-and-see approach is:

z∗(θ)− z∗(θ�) ≤ zws(θ)− zws(θ
�)

min
x

Eωf(x;ω, θ)−min
x

Eωf(x;ω, θ
�) ≤ Eω

�
min
x

f(x;ω, θ)−min
x

f(x;ω, θ�)
�

EVPI(θ) ≤ EVPI(θ�)

where θ is the baseline technological state (distribution) without R&D, and θ� is the

advanced technological state (distribution) with R&D success. Since the direction

of the inequality depends on characteristics of the uncertainties and optimization

problem, the relationship between the decision-making approach and the R&D success

valuation is ambiguous.

For analytical clarity, this example compares the wait-and-see and expected-value

approaches for R&D success valuation. The expected value of the here-and-now

(stochastic) solution lies between these two solutions.

This example is a simplified representation of the capacity planning problem,

where a utility decides which type of power plant to build to meet demand. The

choice set consists of two alternatives: a conventional carbon-intensive generator (e.g.,

1Mathematical definitions of these solution approaches are found in Chapter 3.3.2.
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coal) and a low-carbon unit (e.g., solar).

The decision is complicated by an uncertain carbon tax that does not materialize

until the second stage. If a fossil-fueled generator is built in the first stage, the

utility bears the risk that the carbon tax will make operations in the second stage

prohibitively expensive, which could require the construction of a low-carbon unit. If

a low-carbon unit is built in the first stage, the utility risks the possibility that no

climate policy will be implemented and that the larger upfront investment cost will

have been unnecessary.

The utility also must decide on the timing of this investment given the possibilities

of delaying the capacity installation decision and of R&D reducing the second-stage

investment costs of the two alternatives. If R&D is expected to lower capital costs

in the second stage, it might be preferable to delay the decision to take advantage

of these lower costs. This decision depends on the assumed cost of delay and on

expectations about the efficacy of R&D in changing cost outcomes. Without loss

of generality, this example assumes the R&D outcome is deterministic so that the

decision-maker knows at the beginning of the first stage whether the program will be

successful and how R&D will influence investment costs.

C.2 Notation

The decision variables and parameters for the utility’s optimization problem use the

following sets and corresponding index notation:

Sets and Indices

i ∈ I generation technology type; i ∈ {1, 2}

t ∈ T stage; t ∈ {1, 2}

ω ∈ Ω carbon policy scenario; ω ∈ {1, 2}

Generator 1 is the conventional fossil-fueled unit, and generator 2 is the advanced low-

carbon unit. The first stage corresponds to near-term decisions over the next decade

or so, and the second stage represents subsequent decisions. It is assumed that the

carbon tax uncertainty is not resolved until the second stage. Scenario 1 (ω = 1)
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corresponds to the state of the world where there is no climate policy, and scenario

2 (ω = 2) corresponds to the carbon tax state. If an R&D program is successful, the

cost reductions do not take effect until the second stage.

Decision Variables

xi first-stage investment in generation technology i

yωi second-stage investment of technology i in scenario ω

wω
i second-stage dispatch of technology i in scenario ω

d unmet demand in first stage

All decision variables are binary so that 1 indicates investment (or dispatch) and 0

indicates no investment.

Parameters

ci first-stage investment cost of technology i

fi second-stage investment cost of technology i with no R&D

ei second-stage investment cost of technology i with an R&D success

∆ cost of lost demand

δ discount factor at time t

�gi uncertain second-stage operating costs of technology i

p probability of no carbon tax (ω = 1)

1− p probability of carbon tax (ω = 2)

Operating costs during the second stage (�gωi ) are random variables due to an

uncertain climate policy. The low-carbon technology is assumed to have negligible

operating costs. Demand must be met through generation in the second stage but

can be satisfied in the first stage either through generation or by paying a cost ∆.

R&D lowers the investment cost of technology i during the second stage from fi

to ei. The R&D program is deterministic in the sense that the decision-maker knows

at the beginning of the time horizon whether the second-stage investment cost is fi

or ei.
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C.3 Approaches

C.3.1 Expected-Value Approach

ẑd = min f(x, ω̄) = min c1x1 + c2x2 +∆d+ δ

�
f1y1 + f2y2 +

�
�

ω∈Ω
p(ω)gω1

�
w1

�

(C.1)

s.t. x1 + x2 + d ≥ 1 (C.2)

x1 + x2 + y1 + y2 ≥ 1 (C.3)

x1 + y1 = w1 + y2 (C.4)

Equation C.1 represents the objective function, which minimizes the discounted sum

of investment and operating costs for the first and second stages. Equations C.2

and C.3 signify the first- and second-stage load balances, respectively. Equation C.4

represents the dispatch constraint for the fossil-fueled generation technology. The

expected-value solution is xd ∈ argmin {f(x, ω̄) | x ∈ C ω̄}, and the expected value of

the expected-value solution is zd = E [f(xd,ω)].

C.3.2 Wait-and-See Approach

zω = min f(x,ω) = min c1x1 + c2x2 +∆d+ δ [f1y1 + f2y2 + gω1w1]

s.t. x1 + x2 + d ≥ 1

x1 + x2 + y1 + y2 ≥ 1

x1 + y1 = w1 + y2

The expected value of the wait-and-see solution is zws = E
�
min f(x,ω)

�
.
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C.4 Cases

C.4.1 Case 1: i = 2 and large ∆

This case involves an R&D program aimed at reducing the cost of the low-carbon

technology (e.g., solar) and has a prohibitively large cost of delay. This high cost

means that the decision-maker cannot postpone an installation decision until the

second stage when more information is known about the climate policy.

Proposition C.4.1 (Expected-Value Approach) A parameterization exists such

that the optimal expected-value solution for both the f2 and e2 cases (i.e., regardless

of R&D success for the low-carbon technology) is: x1 = 1, x2 = d = 0; y11 = y12 = y21 =

0, y22 = 1, w1
1 = 1, w2

1 = 0.

Proof For the expected-value strategy to build a conventional generator during

the first stage (x1 = 1), the projected cost of building and operating the facility

must be less than or equal to the investment cost of the advanced option: c1 +

δ [pg11 + (1− p)g21] ≤ c2. The other condition required to ensure that a conventional

unit is built in the first stage instead of delaying investment until the second stage is:

c1 + δ [pg11 + (1− p)g21] ≤ ∆ + δmin [f1 + pg11 + (1− p)g21, f2]. In this case, the cost

of delay (∆) is large, which suggests that this inequality will always be satisfied.

Proposition C.4.2 (Wait-and-See Approach) For both the f2 and e2 cases, a

parameterization exists such that the optimal wait-and-see solution under the no-

policy scenario (ω = 1) is x1 = w1 = 1, x2 = d = y1 = y2 = 0 and that the solution

under the policy scenario (ω = 2) is x2 = 1, x1 = d = y1 = y2 = w1 = 0.

Proof For ω = 1, the necessary conditions for a conventional unit to be build are

c1 + δg11 ≤ c2 and c1 + δg11 ≤ ∆ + δ(e1 + g11). For ω = 2, the necessary inequalities

to ensure that the advanced, low-carbon generator is built are c2 ≤ c1 + δg21 and

c2 ≤ δ(∆+e2). Since ∆ is assumed to be sufficiently large in this case, these necessary

conditions can be summarized as: δg11 ≤ c2 − c1 ≤ δg21.

Proposition C.4.3 There exists a parameterization for the capacity planning prob-

lem such that the expected-value and wait-and-see solutions above hold simultaneously.
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Proof The necessary condition from the proof of Proposition C.4.1 can be rewrit-

ten as δ [pg11 + (1− p)g21] ≤ c2 − c1. The left-hand side is greater than δg11, since

δ [pg11 + (1− p)g21] is a convex combination of δg11 and δg21 (where g21 > g11). Thus,

the necessary conditions for the two decision-making approaches are compatible if

δ
�
pg11 + (1− p)g21

�
≤ c2 − c1 ≤ δg21 .

The value of R&D success (i.e., benefit from reduced costs) for the expected-value

approach can be expressed as:

zd(f)− zd(e) =
�
p(c1 + δg11) + (1− p)(c1 + δf2)

�
−

�
p(c1 + δg11) + (1− p)(c1 + δe2)

�

= δ(1− p)(f2 − e2) > 0

The value of R&D success for the wait-and-see approach can be expressed as:

zws(f)− zws(e) =
�
p(c1 + δg11) + (1− p)c2

�
−
�
p(c1 + δg11) + (1− p)c2

�

= 0

Therefore, in the case where the opportunity cost of delay is large and R&D

applies to the low-carbon technology, the value of R&D is larger for the expected-

value approach than for the wait-and-see approach. The objective function value

under both R&D conditions is smaller for the wait-and-see approach, but this gap

is smaller in the scenario when the R&D program is successful. By the time that

the lower-cost technology is available in the second stage, the only approach that can

take advantage of this cost reduction is the expected-value one when the carbon tax

scenario is realized. The expected-value strategy builds the low-carbon generator in

the second stage due to the strategy’s irreversible investment in the carbon-intensive

generator during the first stage, which is prohibitively costly when a carbon tax is

in place. The substantial cost of delay means that the wait-and-see approach always

invests in the first stage, and the expected-value strategy only invests during the

second stage when the first-stage decision is suboptimal (i.e., when the carbon tax is

much more stringent than the expected value).
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C.4.2 Case 2: i = 1 and small ∆

This scenario represents the case with an R&D program for the conventional technol-

ogy and small cost of delay. This small cost can be interpreted as a utility’s ability

to engage in power purchase agreements at relatively low costs in the near term.

Proposition C.4.4 (Expected-Value Approach) A parameterization exists such

that the optimal expected-value solution for both the f2 and e2 cases is: x2 = 1, x1 =

d = 0; yωi = wω
1 = 0.

Proof For the expected-value strategy to build a low-carbon generator during the

first stage (x2 = 1), the projected cost of building the unit must be less than the

investment and operating cost of the conventional option: c2 ≤ c1+δ [pg11 + (1− p)g21].

The other condition required to ensure that an advanced, low-carbon unit is built

in the first stage instead of delaying investment until the second stage is: c2 ≤
∆+ δ [e1 + pg11 + (1− p)g21]. When ∆ is small, it can be assumed that ∆+ δe1 ≤ c1,

which means that the second condition is more restrictive.

Proposition C.4.5 (Wait-and-See Approach) For the no R&D case, a parame-

terization exists such that the optimal wait-and-see solution is x1 = 1 when ω = 1 and

x2 = 1 when ω = 2. In the R&D case for the conventional technology, the solution is

d = y1 = 1 when ω = 1 and x2 = 1 when ω = 2.

Proof For the no R&D case, the necessary condition for the optimality of the

above solution is: p(c1 + δg11) + (1 − p)c2 ≤ p [∆+ δ(f1 + g11)] + (1 − p)c2. This

condition simplifies to c1 ≤ ∆ + δf1, which is always true if δ = 1. For the

R&D case, the necessary condition to ensure that delay is optimal under the no-

policy scenario instead of building the conventional generator in the first stage is:

p [∆+ δ(e1 + g11)] + (1 − p)c2 ≤ p(c1 + δg11) + (1 − p)c2, which can be reduced to

∆+ δe1 ≤ c1.

Proposition C.4.6 There exists a parameterization for the capacity planning prob-

lem such that the expected-value and wait-and-see solutions above hold simultaneously.
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Proof The necessary condition from Proposition C.4.4 can be expressed in the form

c2−δ [pg11 + (1− p)g21] ≤ ∆+δe1. Thus, combining this result with the condition from

Proposition C.4.5, the necessary conditions for the two decision-making approaches

are compatible if c2 − δ
�
pg11 + (1− p)g21

�
≤ ∆+ δe1 ≤ c1 . The lower bound ensures

that the expected-value solution will choose the low-carbon generator during the first

stage and not opt to delay in the R&D case.2 The upper bound ensures that, in

the no-policy scenario, the wait-and-see solution will wait to build a conventional

generator during the second stage when R&D has reduced its cost, which is true if ∆

is small.

The value of R&D success for the expected-value approach can be expressed as:

zd(f)− zd(e) = [pc2 + (1− p)c2]− [pc2 + (1− p)c2] = 0

The value of R&D success for the wait-and-see approach can be expressed as:

zws(f)− zws(e) =
�
p(c1 + δg11) + (1− p)c2

�
−

�
p(∆+ δ(e1 + g11)) + (1− p)c2

�

= p(c1 −∆− δe1) > 0

Therefore, in the case where the opportunity cost of delay is small and R&D

applies to the conventional technology, the value of R&D is larger for the wait-and-

see approach than for the expected-value approach.

C.5 Summary of Findings

This example shows how it is ambiguous as to whether using different decision-making

approaches will increase or decrease the value of R&D successes. Consequently, the

direction of optimal investments in R&D programs is ambiguous as well. The impact

of the decision-making approach on R&D valuation depends on factors like:

2This condition is true if c2 ≈ e1 (i.e., the investment cost of the low-carbon unit is relatively
small), p is small (i.e., the probability of a carbon tax is high), and/or g21 is large (i.e., the carbon
tax is stringent).
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• How uncertainties interact in the decision problem (i.e., objective function, con-

straints, and parameterization of the optimization problem)

• The form of the distributions chosen for exogenous uncertainties

• The change in technological characteristics brought about by successful R&D

Thus, it requires modeling efforts like those in Chapter 6 to determine the influence

of decision-making approaches on R&D success valuations in specific contexts.
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